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Electrophysiologic Effects of Adenosine Triphosphate and Adenosine
on the Mammalian Heart: Clinical and Experimental Aspects

BERNARD BELHASSEN, MD, AMIR PELLEG, PHD
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Adenosine triphosphate (ATP) and adenosine have strong
negative chronotropic and dromotropic effects on the
mammalian heart. The sensitivity of the sinus node and
the atrioventricular node to ATP and adenosine mani-
fests pronounced variability among species. For more
than three decades, ATP has been used routinely in Eu-
rope in the acute therapy of paroxysmal supraventric-
ular tachycardia. Preliminary clinical trials with aden-

osine in the United States suggest that this compound
may have a similar therapeutic value. The exact mech-
anisms of action of ATP and adenosine on the mam-
malian heart are still not fully known. However, the vast
clinical experience indicates that ATP, and probably also
adenosine, can be safely and repetitively used in the acute
therapy of paroxysmal supraventricular tachycardia.

More than 50 years ago, Drury and Szent-Gyorgyi (1) found
that *‘simple extracts of heart muscle and other tissues, when
injected intravenously into the whole animal, disturbed the
cardiac rhythm in a constant and definite manner, and the
substance or substances involved were dealt with quickly
and efficiently by the whole animal so that the pre-injection
state was completely restored.”’ They elegantly studied this
original observation and concluded that the negative chron-
otropic and dromotropic effects observed in several mam-
malian species were caused by exogenous adenine com-
pounds (1,2). Their original findings have since been
confirmed in numerous studies. Transient negative chron-
otropic and dromotropic effects of adenosine triphosphate
(ATP) and adenosine were demonstrated in human beings
as well as in animal models (3-26).

The electrophysiologic effects of ATP led to its wide use
in Europe as a potent antiarrhythmic agent for the manage-
ment of paroxysmal supraventricular tachycardia (27-33).
Preliminary studies (26) in the United States have indicated
that adenosine is similarly effective in the treatment of this
tachycardia. The chronotropic and dromotropic effects of
adenosine were recently reviewed by Belardinelli et al. (34).
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This review summarizes clinical and experimental data on
the electrophysiologic effects of ATP and adenosine and
discusses possible mechanisms of action of these compounds.

Basic Studies

Since the early report of Drury and Szent-Gyorgyi (1),
the electrophysiologic effects of ATP, adenosine and related
compounds on the mammalian heart have been extensively
studied. The major finding was that both compounds exert
transient negative chronotropic (Fig. 1) and dromotropic
effects on the sinoatrial (SA) and atrioventricular (AV) node,
respectively. However, the magnitude of these effects dif-
fered in various species and experimental models. More-
over, contradictory results were obtained when the influence
of either atropine or vagotomy on the effects of ATP was
studied. Therefore, these results are reviewed in chronologic
order according to the species studied (Table 1).

Guinea pig. Drury and Szent-Gyorgyi (1) found that in
the guinea pig, the administration of 0.5 g extract of the
bullock’s heart muscle in the jugular vein caused a slight
degree of slowing of sinus rhythm but had a more pro-
nounced effect on the AV node, that is, causing transient
complete block. These effects were unaltered by the admin-
istration of atropine sulfate. The dctive substance in the heart
extract was identified as adenylic acid. Adenosine obtained
from yeast nucleic acid had similar effects (1).

Similar depressant effects of ATP and adenosine, pre-
dominant in the AV node, were reported by Wayne et al.
(6). These effects of both ATP and adenosine were not
influenced by cervical vagotomy. In 1966, Stafford (11)
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Figure 1. Transient negative chronotropic action of ATP and
adenosine (ADN) (2.90 uM/kg administered into the right atrium
in less than 1 second; n = 12) in the intact canine heart, expressed
as the percent increase in sinus rhythm cycle length (%SRCL +
SEM). Maximal effects of ATP and adenosine occur 9.5 + 1.2
and 13.1 = 0.6 seconds (p < 0.01) after their administration,
respect:vely. These effects decrease in an exponential manner, and
no significant chronotropic changes are present 60 seconds after
the administration of ATP and adenosine. The maximal effect of
ATP is significantly more pronounced than that of adenosine (p
<< 0.05). The inset shows that the disappearance of the effects of
ATP and adenosine closely follows the mathematical expression
for the first order kinetics (JA] = [A], * € ™¥) because the sem-
ilogarithmic plot of the mean effect of ATP and adenosine versus
time is nearly linear with the correlation coefficient of —0.93 and
—0.98 respectively.

showed that the heart block caused by injection of 25 ug
adenosine in the guinea pig left atrium was transiently po-
tentiated by a single dose of dipyridamole (100 to 800 ug/
kg). The similar effects of ATP were also potentiated by
dipyridamole. Schondorf et al. (12) found that in the isolated
guinea pig heart, adenosine caused pronounced sinus brady-
cardia and an increase in coronary blood flow.

More recently, Belardinelli et al. (17) showed a dose-
dependent prolongation of AV conduction and AV block
caused by adenosine in the perfused guinea pig heart. Con-
duction delay was confined to the AH interval, implicating
adenosine action on the AV node. Similar AV conduction
delay and block were observed under hypoxic conditions.
These effects were not influenced by atropine, but were
significantly attenuated by aminophylline. On the basis of
these results, Belardinelli et al. (17) suggested that endog-
enously released adenosine may explain, in part, the AV
conduction disturbances associated with acute myocardial
hypoxia. This hypothesis is in concert with previous studies
of Szentmiklosi et al. (35,36) in which the effects of aden-
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osine on transmembrane potential and myocardial contrac-
tility were compared with those of hypoxia in guinea pig
left atrial preparations. It was concluded in these studies
that in acute myocardial hypoxia, the increased level of
adenosine might contribute to the functional impairment of
the atrial myocardium (35,36). In another study, Belardi-
nelli et al. (37) compared the effects of purines on the AV
node of the perfused guinea pig heart. In contrast to Wayne
et al. (6), they found that adenosine was more potent than
ATP and concluded that the ATP-induced prolongation of
AH interval and AV block is a consequence of its rapid
degradation to adenosine.

Rabbit. Drury and Szent-Gyorgyi (1) reported that doses
up to 100 mg of adenosine administered intravenously to
unanesthetized rabbit produced a very transient bradycardia.
Almost 20 years later, Emmelin and Feldberg (5) found that
injection of ATP into the left auricle of the rabbit caused
pronounced bradycardia that was not prevented by either
vagotomy or atropine. The magnitude of this response was
dose-dependent, but with repeated injections the slowing
became gradually less pronounced. More recently, Belar-
dinelli et al. (17) found that adenosine had a similar effect
on perfused guinea pig and rabbit hearts; however, the rabbit
heart was less sensitive to adenosine.

Cat. In 1948, Emmelin and Feldberg (5) reported that
in cats anesthetized with chloralose, 0.2 to 0.4 mg ATP
injected into either the left auricle or left coronary artery
produced pronounced bradycardia. This negative chrono-
tropic effect was abolished by vagotomy. The slowing of
heart rate was often less pronounced when similar doses of
ATP were injected into the ascending aorta.

Wayne et al. (6) also studied the effects of ATP and
adenosine in the cat. They reported that the administration
of 0.3 to 1.0 mg/kg magnesium adenosine triphosphate
(MgATP) resulted in short-lasting sinus bradycardia and
complete AV block. These affects on the SA and AV nodes
were not reproduced by equimolar amounts of adenosine.
A section of the vagi, however, equated the effects of ATP
and adenosine.

Dog. In 1929, Drury and Szent-Gyorgyi (1) described
the effects of adenosine (up to 50 mg) injected into the
femoral vein of dogs anesthetized with morphine and chlor-
alose. The sinus rhythm was consistently slowed by the
injection in a dose-dependent manner. The onset of the
bradycardia was 10 to 15 seconds after the injection, and it
gradually disappeared. Vagal block with atropine did not
modify the effects of adenosine on the heart rate. By means
of atrial pacing, Drury and Szent-Gyorgyi (1) found that
adenosine consistently shortened the atrial absolute refrac-
tory period. In the presence of adenosine, atrial flutter and
fibrillation could be readily induced by atrial pacing. In
contrast to its pronounced effects on the atria, adenosine
(up to 100 mg) did not affect the electrophysiologic char-
acteristics of the ventricle.
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Table 1. Negative Chronotropic and Dromotropic Effects of ATP and Adenosine in the Mammalian Heart

Effect Effect Vagal Reference
Drug Dose Administration on SAN on AVN Involvement (first author)
Guinea Pig
Adenyl-cyclic 05¢g Jugular vein + +++ - Drury (1)
MgATP 0.5 to 1 mg/kg Jugular vein + ++ + - Wayne (6)
Adenosine * Jugular vein + ++ + - Wayne (6)
Adenosine 25 ug Left atrium +++ Stafford (11)
ATP *k Left atrium ++ + Stafford (11)
Adenosine 10740 10-"M Isolated heart +++ - Belardinelli (17)
Adenosine 7 x 107°M, Isolated heart ++ + Belardinelli (37)
2 x 107°M
ATP 7 X 107%™, Isolated heart + Belardinelli (37)
2 X 10°°M
Rabbit
Adenosine 100 mg Femoral vein +++ - Drury (1)
ATP 0.05 mg Left auricle + 4+ + - - Emmelin (5)
Adenosine 107 t0 107*M Isolated heart + + - Belardinelli (17)
ATP 0.2 t0 0.4 mg Left atrium ++ + — + Emmelin (5)
MgATP 0.3 to 1 mg/kg Jugular vein ++ + ++ + Wayne (6)
Adenosine * Jugular vein + - Wayne (6)
Dog
Adenosine 50 mg Femoral ++ + - - Drury (1)
ATP 0.2 mg Left auricle ++ + — + Emmelin (5)
Adenosine 0.1 to 2 mg/kg Jugular vein +++ - Angelakos (8)
ATP, adenosine 1 to 1,000 ug SA nodal artery ++ + — — James (9)
ATP 100 g-10 mg AV nodal artery ++ + - Urthaler (14)
Adenosine 100 g-10 mg AV nodal artery + Urthaler (14)
Adenosine 0.3t0 10 ug SA nodal artery ++ + Chiba (15)
Adenosine 10 to 1,000 ug AV nodal artery +++ Belardinelli (18)
ATP 1.6 mg/kg Right atrium ++ + +++ + Pelleg (25)
Adenosine 2 mg/kg Femoral vein + - Munoz (23)
Human Being

MgATP 15 to 40 mg v ++ + ++ + + Wayne (6)
ATP 20 mg IV/right atrium + 4+ + ++ + - Leclercq (16)
ATP Variable v + 4+ - Lechat (20,21)
Adenosine 190 + 88ug/kg v + ++ - DiMarco (26)

ATP = adenosine triphosphate; AVN = atrioventricular node; IV = intravenous; SAN = sinoatrial node; * = equimolar dose of the previously
administered ATP and adenosine (**); +, + + and + + + = weak, moderate and strong effect, respectively; — no effect; --- indicates unavailable

data.

The effects of ATP in dogs were studied by Emmelin
and Feldberg (5). They found that injection of ATP (0.2
mg) into the left auricle or the base of the aorta caused
pronounced slowing of the heart that could be prevented by
either vagotomy or atropine. In contrast, the latter inter-
ventions did not interfere with the cardiovascular actions of
adenosine (8).

Using an open chest model with direct perfusion of the
SA nodal artery, James (9) studied the effects of ATP and
related compounds on the canine heart. Administration of

equimolar amounts of ATP and adenosine resulted in an
immediate, transient negative chronotropic effect of equal
magnitude. The magnitude and the duration of sinus brady-
cardia were linearly dependent on the injected dose of ATP
and adenosine. The negative chronotropic effect of ATP and
adenosine was not altered by intravenous administration of
atropine. Using a similar method, Urthaler and James (14)
evaluated the effects of ATP and adenosine on the canine
AV node. They found that the administration of ATP re-
sulted in various degrees of transient AV block and that
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adenosine did not produce any direct dromotropic effect.
However, a similar negative chronotropic effect on AV junc-
tional ¢scape rhythm was obtained with ATP and adenosine
in this model. Neither bilateral vagotomy nor the admin-
istration of atropine altered the response to ATP. Chiba and
Hashimoto (13) used a similar preparation of selective per-
fusion of the canine SA and AV nodal arteries to compare
the effects of acetylcholine and adenosine. Adenosine in-
duced almost the same degree of sinus bradycardia as ace-
tylcholine. In contrast, adenosine had a much smaller effect
on the AV node such that only high doses produced a low
degree AV block. In the isolated canine right atrium per-
fused with blood through the SA nodal artery, Chiba (15)
found that 0.3 to 10 ug adenosine caused a negative chron-
otropic and inotropic effect. These effects were potentiated
by dipyridamole, an inhibitor of nucleoside transport (38,39).

More recently, Belardinelli et al. (18) did find a dose-
dependent, transient increase in AV conduction and AV
block after the rapid administration of 10 to 100 ug aden-
osine into the AV nodal artery in an open chest canine
model. A dose of 1 mg of adenosine caused a transient
second degree AV block. Dipyridamole potentiated the neg-
ative dromotropic effects of adenosine, whereas amino-
phylline, a competitive antagonist of adenosine (40,41),
attenuared them,

In a closed chest canine model, Pelleg et al. (25) found
that both ATP and adenosine (1.6 mg/kg) administered into
the right atrium exerted strong transient negative chrono-
tropic «nd dromotropic effects on the SA and AV node,
respectively. The effects of ATP, however, were more pro-
nounced than those of adenosine. Either atropine (0.2 mg/
kg) or bilateral cervical vagotomy after propranolol admin-
istratior. (0.5 mg/kg) markedly attenuated the effects of ATP
but not of adenosine. In the presence of propranolol and
vagotomy, when the action of ATP and adenosine were
practically identical, aminophylline and dipyridamole at-
tenuated and enhanced, respectively, the effects of ATP and
adenosine in a similar manner (Pelleg et al., unpublished
observations). Similar results with regard to the differential
potencies of ATP and adenosine and the involvement of the
vagus in the mechanism of action of ATP were reported by
Munoz et al. (23).

In summary, the potencies of the chronotropic and drom-
otropic effects of ATP and adenosine show pronounced
variability among species. Whereas in guinea pigs the AV
node is more sensitive to ATP and adenosine than is the
sinus node (1,6) the opposite is true in dogs, cats and rabbits.
Adenosine is more potent than ATP in the guinea pig (37),
less potent in the dog and cat (6,23,25) and equipotent in
the rabbit (17). The mechanism of action of ATP and aden-
osine seems also to be different. Vagal involvement was
demonsirated in the action of ATP in several species
(5,6,23.25), but it was not found in the action of adenosine.
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Hemodynamic effects. In addition to their electrophys-
iologic effects, ATP and adenosine have pronounced effects
on cardiovascular hemodynamics. Both compounds produce
a dose-dependent coronary and peripheral vasodilation that
is more pronounced for ATP than for adenosine (42,43).
This action results in a significant decrease in arterial blood
pressure that reaches a maximum in 15 to 30 seconds. Blood
pressure fully recovers to control values within 2 to 3 min-
utes (1,4,5,8). The decrease in blood pressure is not affected
by vagotomy or muscarinic cholinergic blockade. The pe-
ripheral vasodilation results in baroreflex tachycardia that
is suppressed by beta-adrenergic receptor blockade (44). In
cats, the decrease in blood pressure was attributed, in part,
to transient obstruction of pulmonary circulation (5).

The negative chronotropic effects of ATP and adenosine
tend to obscure their inotropic effects. Depending on the
species and the cardiac tissue studied, negative or positive
inotropic effects, or both, were observed (14,45).

Human Studies
Clinical and Electrophysiologic Effects

Effects on the normal conducting system. Despite the
wide clinical use of ATP in the therapy of supraventricular
tachycardia, only a few studies evaluated its electrophysi-
ologic effects on the normal conducting system of the human
heart. Wayne et al. (6) observed dose-related negative
chronotropic and dromotropic effects of MgATP in the hu-
man heart. Small doses of 5 to 15 mg, administered intra-
venously as a bolus, produced sinus tachycardia preceded
by a short period of sinus slowing. Larger doses of MgATP
(15 to 30 mg) resulted in pronounced sinus bradycardia and
a first or a second degree AV block. A maximal dose of 30
to 40 mg produced similar changes but of greater intensity.
Using the highest dose, ventricular standstill was observed
in some patients. Using equimolar doses of MgATP and
adenosine in two patients, Wayne et al. found that adenosine
had effects similar to those of ATP but was less potent. In
five patients, atropine diminished the negative chronotropic
and dromotropic effects of MgATP. Leclercq and Coumel
(16) studied the effects of ATP (20 mg bolus injection)
administered during sinus rhythm into a peripheral vein or
the right atrium. They observed one or several of the fol-
lowing: sinus bradycardia, AV block and secondary sinus
tachycardia. The latter was most frequently noted.

Lechat et al. (20,21) compared the effects of atropine
and aminophylline on the transient complete AV nodal block
induced by ATP during atrial pacing. The conduction dis-
turbances caused by ATP were not affected by administra-
tion of 0.03 mg/kg atropine, but were prevented by ami-
nophylline (2 to S mg/kg), a competitive antagonist of aden-
osine (22,46,47); similar results were obtained by Favale
et al. (19,24).
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More recently, DiMarco et al. (26) administered an in-
travenous bolus of adenosine to 17 patients during electro-
physiologic studies. A mean dose of 190 + 88 ug/kg given
to 15 patients during sinus rhythm, produced in all a greater
than 50% increase in sinus cycle length. In 17 patients, a
mean dose of 179 * 88 ug/kg of adenosine prolonged AV
nodal conduction, leading to complete AV nodal block.
These changes occurred 10 to 20 seconds after the injection
and lasted less than 10 seconds. Atropine (0.02 to 0.03 mg/
kg) did not alter these effects of adenosine.

In summary, these studies showed that both ATP and
adenosine exert strong transient chronotropic and dromo-
tropic effects on the SA and AV node, respectively. The
involvement of the vagus in the action of adenosine or ATP
was ruled out in all studies with the exception of one (6).
Whether this discrepancy could be explained by the fact
that in the latter study the magnesium salt of ATP was used
is undetermined. The fact that aminophylline and not atro-
pine attenuated the effects of ATP in human beings (20,24)
suggests a direct action of ATP or its metabolites, or both.

Effects on tachyarrhythmias: clinical studies (Table
2). The earliest report that we could find on the effects of
ATP in paroxysmal supraventricular tachycardia is by Somlo
(27) in 1955. He reported that more than 200 episodes of
the tachycardia were terminated by rapid intravenous admin-
istration of 20 mg of ATP. Cardiac standstill, lasting 2 to
4 seconds, was commonly seen 18 to 20 seconds after the
administration of the drug. The asystole was sometimes
interrupted by either atrial or ventricular extrasystoles orig-
inating from various foci. Gradual recovery to normal sinus
thythm was observed, and after a few complexes the elec-
trocardiogram had a normal configuration.

Komor and Garas (28) reported on 300 administrations
of ATP in 52 patients with paroxysmal supraventricular
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tachycardia (including one patient who received ATP 183
times over a period of 4 years). In 250 episodes, ATP
promptly terminated the tachycardia. In most of these cases,
a dose of 10 to 40 mg of ATP was found effective; however,
doses of up to 70 mg were administered without any harmful
effects.

The effects of ATP on various types of tachycardia were
extensively studied in France. Latour et al. (29) adminis-
tered 10 to 20 mg of ATP in 39 patients having 51 episodes
of tachycardia (43 episodes of AV junctional tachycardia,
7 of various atrial arrthythmias and 1 of ventricular tachy-
cardia). ATP did not affect the ventricular tachycardia but
terminated 42 of 43 episodes of AV junctional tachycardia
and transiently slowed the ventricular rate of all atrial
tachyarrhythmias.

Motté et al. (30) administered intravenously 20 mg of
ATP during 49 episodes of tachycardia in 36 patients. Con-
version to sinus rhythm was obtained within 30 seconds in
40 of 41 episodes of AV junctional tachycardia. The admin-
istration of ATP in eight patients during episodes of tachy-
cardia of undetermined origin with wide QRS configuration
gave the following results: in five cases, ventricular rate
transiently slowed, indicating the presence of atrial flutter;
in one case, termination of the tachycardia suggested the
involvement of AV reentry; in one case, transient ventric-
uloatrial block without any change in the ventricular rate
suggested that the tachycardia had a ventricular origin and
in one case, no change in the rate of the tachycardia was
observed. Later studies in this patient indicated that the
tachycardia was atrial flutter with conduction through an
accessory pathway.

In summary, these clinical studies demonstrated that ATP
is a highly effective agent for the acute therapy of parox-
ysmal supraventricular tachycardia. In addition, ATP can

Table 2. Effects of ATP and Adenosine in Various Tachyarrhythmias

No. of No. of Reference
Drug Dose Arrhythmia Patients Episodes Conversion Side Effects (first author)
ATP 20 to 30 mg PSVT — 214 — Minor Somlo (27)
ATP 10 to 70 mg PSVT 52 300 — Minor Komor (28)
ATP 10 to 20 mg PSVT 43 42 (98%) Convulsions (1) Latour (29)
10 to 20 mg AT } 39 7 0 ‘ Asthma (1)
10 to 20 mg VT 1 0
ATP 20 mg PSVT 42 41 (98%) Minor Motté (30)
20 mg AT 36 5 0 Syncopal
20 mg VT ) 1 0 cardiac pause (2)
20 mg AT/WPW 1 0
ATP 3to 15 mg PSVT — 36 32 (839%) Minor Greco* (32)
ATP 20 mg PSVT 18 18 17 (94%) Minor Belhassen (33)
Adenosine 83 + 35 ug/kg PSVT 5 32 32 (100%) Minor DiMarco (26)
83 = 35 ug/kg AT 1 — 0
ATP — PSVT 10 10 10 (100%) Minor Tajima (50)
— AT 2 2 1

*Infants and children; AT = atrial tachycardia; PSVT = paroxysmal supraventricular tachycardia; VT = ventricular tachycardia; WPW = Wolff-

Parkinson-White syndrome; — = unavailable data.
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cause transient slowing of the ventricular rate during atrial
tachyarrhythmias, but has no effect on ventricular tachycardia.

Effects on tachyarrhythmias and pre-excitation: elec-
trophysiologic studies. In contrast to the wide clinical use
of ATP in the management of supraventricular tachycardia,
only a few electrophysiologic studies were performed in
patients with tachyarrhythmias and pre-excitation. Perrot
and Faivre (48,49) administered intravenously 20 to 40 mg
of ATP to patients with manifest or concealed pre-excitation
and to patients with a short PR interval and normal QRS
complex. Whenever pronounced alteration in antegrade no-
dal conduction was observed, ventricular pacing was ini-
tiated. Increase in the degree of pre-excitation was seen in
15 of the 22 patients with Wolff-Parkinson-White syn-
drome. In the remaining seven patients, administration of
ATP completely abolished the pre-excitation pattern. The
latter group of patients had either prolonged refractory pe-
riod of the accessory pathway or associated James and Ma-
haim fibers. The administration of ATP during ventricular
pacing did not alter retrograde conduction through the ac-
cessory pathway in 17 patients. However, in the remaining
five patients, retrograde conduction was prolonged or com-
pletely abolished. In 10 patients with concealed accessory
pathways, antegrade pre-excitation did not appear after the
administration of ATP. ATP did not alter retrograde con-
duction through the accessory pathway in 7 of these 10
patients but depressed it in 3 patients. In the 16 patients
with a short PR interval and normal QRS complex, ATP
depressad retrograde conduction in 11, but did not affect it
in 5 patents. On the basis of these results, Perrot and Faivre
(48,49) concluded that ATP depressed conduction in the
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AV node and in those accessory pathways that either had a
prolonged refractory period or involved the AV node.

More recently, Belhassen et al. (33) administered intra-
venously 20 mg of ATP to 18 patients with AV reentrant
tachycardia, during both tachycardia and ventricular pacing.
ATP terminated the tachycardia within 16 seconds in eight
of nine patients with AV nodal reentry and in all nine pa-
tients with an accessory pathway (Fig. 2). Termination of
the tachycardia in these two groups of patients was due to
a block in the antegrade slow pathway and in the AV node,
respectively. In one patient with AV nodal reentry, ATP
slowed the rate of the tachycardia by delaying conduction
in the slow antegrade pathway. The administration of ATP
during ventricular pacing resulted in transient complete ven-
triculoatrial block or slight prolongation of the retrograde
conduction time in five of the nine patients with AV nodal
reentry, but it did not alter retrograde conduction in the
remaining four patients. In all patients with an accessory
pathway, retrograde conduction through the pathway was
not affected by ATP; similar results were reported by Tajima
et al. (50).

The discrepancy between the results of Perrot and Faivre
(48,49) and those of Belhassen et al. (33) may be explained
by the following: 1) In the former study higher doses of
ATP were administered; 2) the accessory pathways in pa-
tients of the latter study had shorter refractory periods than
those of patients in the former study; 3) in the latter study,
no evidence for the presence of James and Mahaim fibers
was found; and 4) the ATP-sensitive accessory pathways of
the former study might have included aberrant AV nodal
tissue.

M A" V"""V a0V

P

Figure 2. The effects of ATP (20 mg administered
intravenously in 1 second) during atrioventricular
reentrant tachycardia in a patient with a concealed
left lateral accessory pathway. Tracings from top
to bottom are: electrocardiographic lead V,, pul-
monary artery trunk electrogram (PA), AV junc-
tional electrogram (AV) and high right atrial elec-

trogram (HRA). Termination of the tachycardia
occurs 9 seconds after the drug administration ow-

ing to AV nodal block after a progressive increase

e
v /~ in A’H interval. No significant change in accessory
- A A pathway conduction is noted. Sinus bradycardia at
) ! a cycle length of 1,300 ms is subsequently present
NV%L‘AW M»‘Hﬂ‘f;w foryS secon%is. A and A’ denote antggradeyar:ld ret-
A A rograde atrial activity, respectively.; H = His .bun-
M 'U | die deflection; V = ventricular activity. (Reprinted
N " s N_" from Belhassen B, et al. [33] with the permission
1’ ; of the American Heart Association, Inc.)
. ’
T ‘
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In a prelimindry report, DiMarco et al. (26) described
the effects of adenosine on AV reentrant tachycardia in-
volving AV nodal reentry in two patients and retrograde
accessory pathways in three patients. Adenosine (83 = 35
pg/kg) terminated all episodes of induced tachycardia within
10 to 20 seconds after prolongation of AV nodal conduction
time (Fig. 3). DiMarco and coworkers noted that the dose
of adenosine required to terminate the tachycardias was
equal to or less than the dose required to produce either
sinus bradycardia or AV block during sinus rhythm. In five
patients with supraventricular tachycardia, adenosine ter-
minated the tachycardia in the presence of atropine. In two
patients, however, a higher dose of adenosine was required
to terminate the arrhythmia. In patients with Wolff-Parkin-
son-White syndrome, DiMarco et al. did not find any effect
of adenosine on the antegrade conduction in the accessory
pathways.

In summary, electrophysiologic studies of ATP and aden-
osine administration on supraventricular tachycardia in hu-
man beings confirm their strong negative dromotropic ef-
fects on the AV node. However, both agents only affect
those accessory pathways that have a prolonged refractory
period or involve the AV node.

ATP compared with other antiarrhythmic agents.
Greco et al. (32) compared the efficacy of digitalis, ATP
and verapamil in the treatment of paroxysmal supraventric-
ular tachycardia in infants and children. They found that
ATP was as effective as verapamil in terminating the tachy-
cardia (90% success rate) and more effective than digitalis.
In their study, severe adverse effects were noted in two
patients after the administration of verapamil. In contrast,
frequent but benign side effects were observed after the
administration of ATP.

Preliminary results in adult patients (Belhassen et al.,
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unpublished data) showed that administration of ATP re-
sulted in prompt termination of paroxysmal supraventricular
tachycardia resistant to verapamil, ajmaline and digoxin.

Potency

The rate of administration has a pronounced influence
on the potency of ATP. When administered slowly, ATP
causes an acceleration in sinus rate (51). This is probably
due to reflex response after the systemic vasodilation caused
by ATP. In contrast, sinus bradycardia or depressed AV
conduction, or both, is common when ATP is administered
rapidly as a bolus injection.

The site of administration also influences the potency of
ATP. Leclercq and Coumel (16) compared the effects of
ATP administered through a peripheral vein and into the
right atrium. They found that the effects of ATP, given in
the latter mode, were more frequent, more intense and quicker
in onset. This finding could be explained by the rapid in-
travascular degradation of ATP (52-54).

Figure 3. The effects of intravenous bolus administration of aden-
osine (75 pg/kg) during atrioventricular reentrant tachycardia (SVT)
in a patient with Wolff-Parkinson-White syndrome. Shown from
top to bottom are: electrocardiographic lead V,, intracardiac re-
cordings of the right atrium (RA), coronary sinus (CS) and His
bundle region (HB) as well as the recording of the radial artery
pressure. About 11 seconds after the administration of adenosine,
conduction through the AV node is blocked and normal sinus
rhythm (NSR) with various degrees of preexcitation resumes. Ra-
dial artery pressure, which has been constant at 118/66 mm Hg
during tachycardia, increases to 140/82 mm Hg when sinus rthythm
is restored. LA = left atrial; LV = left ventricular. (Reprinted
from DiMarco et al. [26] with the permission of the authors and
the American Heart Association, Inc.)
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Side tffects

The administration of ATP has been frequently associated
with various cardiac and noncardiac side effects. These side
effects are always transient, reach a maximum within 30
seconds and, excluding rare cases, disappear completely
within 2 minutes. Noncardiac symptoms frequently include
malaise, hyperpnea, flushing, headache and rarely retching
and vomiting (6,30,32,33,51). One case of bronchial asthma
and another case of convulsions have also been reported
(29).

The common cardiac side effects include sinus arrest,
sinus bradycardia and various degrees of AV block. These
side effects are short lasting (a few seconds), usually well
tolerated and do not require any intervention. In only a few
instances, a thoracic blow was required to restore normal
sinus rhythm when a prolonged symptomatic cardiac pause
occurred (30). Rare recurrence of arrhythmias probably caused
by transient atrial and ventricular hyperexcitability after the
administration of ATP have also been noted (30,33). In one
of our patients with a history of coronary heart disease,
chest pain occurred after the termination with ATP of par-
oxysmal supraventricular tachycardia. This phenomenon could
be explained by the transient bradycardia after ATP admin-
istration. In other similar patients, no deleterious effects
were observed even when the drug was given during tachy-
cardia associated with anginal pain (Belhassen et al., un-
published data). Recently, Tajima et al. (50) showed that
pretreatment with inosine might be useful to alleviate the
uncomfortable side effects of ATP.

In the study with adenosine in human subjects (26), no
adverse side effects were noted with a mean dose of 179
ug/kg. Only facial flushing occurred in 5 of 17 patients.
No sigrificant decrease in the arterial blood pressure was
observed; on the contrary, blood pressure slightly increased
on conversion to normal sinus rhythm (Fig. 3).

In summary, transient and almost always benign side
effects occur after the administration of ATP. The severity
of these side effects may be reduced by the administration
of smaller doses of ATP. Comparative clinical studies with
ATP and adenosine are needed to determine which of the
two compounds is better tolerated.

Mechanism of Action of ATP and Adenosine

The exact mechanism of action of ATP and adenosine
in the mammalian heart has not been fully delineated. This
is due, at least in part, to the wide spectrum of hemody-
namic, hiochemical and neurohumoral effects of ATP and
adenosine that interact with each other and might directly
and indirectly influence the electrophysiologic effects of
these compounds. Some of these well documented effects
of ATP and adenosine are: 1) positive and negative ino-
tropism '4,5,7,42,55-57); 2) stimulation of prostaglandin
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release (58): 3) coronary vasodilation (59-62); 4) reduced
release of norepinephrine from neural endings (63,64); and
5) inhibition of myocardial effects of catecholamines (65,66).

Adenosine and ATP receptors. In 1976, Burnstock (67)
drew attention to the potent extracellular actions of purine
nucleotides and nucleosides on excitable membranes. He
later proposed (42,47) that there are two types of purinergic
receptors, P, and P,, different from cholinergic muscarinic
receptors, which mediate the action of adenosine and ATP,
respectively. The P, receptor is most sensitive to adenosine
and is competitively blocked by methylxanthines, whereas
the P, receptor is most sensitive to ATP. Competitive an-
tagonists at the P, receptor have not been identified. In recent
years, attempts have been made to further characterize P,
receptors using the apparent order of potency of adenosine
and its analogs (68). Thus, Wolff et al. (69) proposed two
sites for adenosine receptors: the external and cytoplasmic
surfaces of the cell membrane designated as R and P sites,
respectively. The R site preferentially accepts adenosine
analogs with unmodified ribose ring and the P site accepts
the ribose-modified analogs. On the basis of their effects
on adenylate cyclase, the former receptors were subclassi-
fied into stimulatory and inhibitory receptor, Ra and Ri (or
A, and A,), respectively (70,71). However, the presence
of external adenosine receptors that are not functionaily
linked to the adenylate cyclase system has also been shown
(72).

Mediation of adenosine cardiovascular effects. The
question as to what type of receptor mediates a given car-
diovascular effect of adenosine is still unanswered. Con-
cerning the vasodilating and negative inotropic effects of
adenosine, early studies (73-75) showed that a cell surface
receptor is involved. Further work (76,77) indicated that in
the guinea pig atrium the negative inotropic effect of aden-
osine is mediated by an A,-receptor. However, more recent
data obtained by Hughes and Stone (78) led them to con-
clude that the purine receptor mediating these effects should
not be classified on the A;/A, system. The mechanisms
involved in the electrophysiologic effects of adenosine are
also unclear. Evidence for the involvement of R type re-
ceptors in the negative dromotropic action of adenosine was
found by Belardinelli et al. (22). The suppressing effect of
adenosine on ventricular automaticity (79) was also attrib-
uted to its binding to purine receptors located in the spe-
cialized pacemaker fibers of the ventricular tissue (80). More
recently, Endoh et al. (81) concluded that the negative
chronotropic action of adenosine is not associated with changes
of cyclase function.

Because close relations between cyclic adenosine mon-
ophosphate (cAMP) and slow inward current have been
found (82-84), changes in the levels of cAMP could explain
the inhibitory effect of adenosine on slow calcium channels
(85-87). This inhibition may contribute, in part, to the
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reduction of calcium fluxes caused by adenosine (88-90).
In addition, adenosine may interfere with the fast sodium
current (57,85). These effects of adenosine on the slow and
fast channels are probably responsible for the shortening of
the atrial action potential by adenosine (55,88). In addition,
like acetylcholine, adenosine increases K* conductance re-
sulting in shortening of atrial action potential hyperpolari-
zation of the membrane of atrial cells (55,86,88).

Mediation of ATP effects. Less is known about the
mechanism of action of ATP. Some effects of ATP appear
to be the result of its breakdown to adenosine (54,91,92)
by ectoenzymes (52). However, there is some evidence (93)
that ATP can stimulate P, receptors without conversion to
adenosine.

The involvement of the vagus in the mechanism of action
of ATP was suggested in dogs (5,23,25) and cats (5,6), but
not in human beings (19-21), guinea pigs (6) and rabbits
(5). A vagal reflex triggered by ATP and not by adenosine
could be responsible, at least in part, for the higher potency
of ATP found in the heart of cettain mammalian species.
In addition, the fact that ATP but not adenosine increases
the sensitivity of nicotinic cholinergic receptors (94) may
also play a part in the different potencies of these two
compounds.

In summary, the mechanisms of action of ATP and aden-
osine are still obscure. Special surface receptors that can be
coupled to adenylate-cyclase probably mediate some of the
effects of adenosine. The fast breakdown of ATP to aden-
osine facilitates the action of ATP through adenosine re-
ceptors; however, direct stimulation of adenosine receptors
by ATP cannot be excluded. Finally, in some species the
vagus is involved in the mechanism of action of ATP, which
explains the higher potency of ATP than that of adenosine
in these species.

Conclusions

Both ATP and adenosine are highly effective in termi-
nating paroxysmal supraventricular tachycardia and have
many qualities of the ideal antiarrhythmic drug (95). The
very short half-life of these drugs enables repeated admin-
istration of increased doses without reaching toxic effects.
In addition, ATP and adenosine may be used as a diagnostic
tool to differentiate supraventricular tachycardia with in-
traventricular aberrancy from ventricular tachycardia as well
as AV reentrant tachycardia from atrial tachyarrhythmias.
Comparative studies of ATP, adenosine and verapamil in
human beings are desired to determine the drug of choice
for the short-term therapy of paroxysmal supraventricular
tachycardia.
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