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ABSTRACT

Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot tem-
peratures. How energy is conserved under such harsh environmental conditions is a major question in cellular
bioenergetics of archaea. The key enzymes in energy conservation are the archaeal AjAp ATP synthases, a class
of ATP synthases distinct from the F,Fo ATP synthase ATP synthase found in bacteria, mitochondria and chloro-
plasts and the V;V ATPases of eukaryotes. A;Ag ATP synthases have distinct structural features such as a collar-
like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A;Ag ATP synthase dur-
ing rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic
energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and
subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this
unique class of ATP synthases. An outstanding feature of archaeal A;Ap ATP synthases is their diversity in size
of rotor subunits and the coupling ion used for ATP synthesis with H", Na* or even H and Na* using enzymes.
The evolution of the H™ binding site to a Na™ binding site and its implications for the energy metabolism and

physiology of the cell are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Life under extreme conditions — some like it salty, some acidic, some
cold or hot! Adaptation of archaea to different environmental conditions
requires special cellular adaptation mechanisms to confer life and stabil-
ity of proteins at temperatures at or above 100 °C, at salt concentrations
up to 5 M or at pHs ranging from 1 to 12. Ever since archaea have been
isolated, especially the hyperthermophilic archaea have attracted much
interest. Hyperthermophilic organisms, which are defined as having opti-
mal growth temperatures above or at 80 °C, were discovered over
30 years ago [1]. Since then more than 70 hyperthermophilic species
have been isolated. The world records in growth at high temperatures
are held by Pyrococcus furiosus, which grows at an optimal temperature
of 100 °C [2], Pyrodictium occultum, which grows from 98 °C to 105 °C
[3], Hyperthermus butylicus, which grows up to 108 °C [4], Methanopyrus
kandleri, which grows up to 113 °C [5] and Pyrolobus fumarii, which
grows between 90 °C and 113 °C (at a pressure of 25.000 kPa) and that
can also withstand autoclaving at 121 °C [6]. So far no hyperthermophilic
organism has yet been discovered growing at temperatures above 121 °C,
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but their existence is not impossible. Hyperthermophiles are the deepest
branching organisms of the bacterial and archaeal 16S rRNA-based
phylogenetic trees and are considered therefore to represent “early
organisms” adapted to the conditions similar to those found on the
early earth [1,7-10]. Hyperthermophiles were isolated from geothermal-
ly heated environments like submarine hydrothermal vents, from the
walls of “black smoker” hydrothermal vent chimneys, hot marine
sediments or hot springs, where hydrogen gas is found at high levels
due to volcanic outgassing [11-15] or by abiotic production [11,16].

This review will introduce the strategies of energy conservation in
archaea and the key component in cellular bioenergetics, the AAg
ATP synthase. Unlike energy conservation mechanism in eukaryotes
and bacteria, in archaea, like methanogens, metabolism is coupled to
the generation of a H"- and/or Na*-gradient across the membrane,
and both ion gradients drive the synthesis of ATP [17]. The A;Ao ATP
synthase, catalyzing the synthesis of ATP, is composed of nine subunits
in a proposed stoichiometry of As:B3:C:D:E,:F:Hj:a:c. The enzyme
possesses a water-soluble A; sector, containing the catalytic sites, and
an integral membrane Ag domain, involved in ion translocation [18]. A
variety of structural approaches have given a deeper insight into the
structural details of individual A;Ag ATP synthase subunits as well as
subcomplexes, and have revealed important evolutionary structural de-
tails that lead to variations in nucleotide recognition and mechanism of
ATP synthesis and/or ATP hydrolysis of the biological nanomachine
A1Ao ATP synthase, when compared with the evolutionary related
F1Fo ATP synthases and eukaryotic V{Vqy ATPases.
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2. Energy conservation in archaea

The principle mechanisms of energy conservation known to date,
e. g. chemiosmosis or substrate level phosphorylation (SLP) were
invented very early in evolution and are found also in archaea, but
due to their phylogenetic position, very close to the root of the tree of
life, it is hypothesized that ancient forms of chemiosmosis are present
in archaea [19]. Up to now five phyla are present in the domain Archaea.
The Euryarchaeota, containing methanogens, hyperthermophilic and
halophilic archaea, and Crenarchaeota with archaea having a sulfur
metabolism (including some hyperthermophiles), are the two major
phyla of Archaea. Thaumarchaeota are closely related to the Crenarchaeota
and contain ammonia-oxidizing archaea. The phyla Nanoarchaeota and
Korarchaeota are represented only by one species Nanoarchaeum equitans
and Korarchaeum cryptofilum, respectively which are very close to the
root of the tree of life. Archaea are physiologically enormously heteroge-
neous. They can grow heterotrophically on various compounds and use
substrate level phosphorylation (SLP) to synthesize ATP in combination
with chemiosmosis. Under anaerobic conditions energy can be conserved
by fermentation, anaerobic respiration with nitrate, anaerobic photores-
piration using bacteriorhodopsin as well as proton-pumping hydroge-
nases and sodium ion-pumping methyltransfer reactions [19,20].
Especially the hydrogenases are of great interest since hydrogen certainly
was around in early earth and is used by a number of archaea as
an electron donor. In the following section a brief introduction to
hydrogen-dependent energy conservation mechanisms will be given.
For more comprehensive reviews, the reader is referred to recent reviews
[20-22].

P. furiosus, a hyperthermophilic strictly anaerobic archaeon that
belongs to the phylum Euryarchaeota, conserves energy for growth by
fermentation of carbohydrates and peptides to CO,, H, and organic
acids, e.g. acetate, in the absence of elemental sulfur [2]. Hydrogen is
evolved by hydrogenases with reduced ferredoxin as an electron
donor. Ferredoxin plays a central role in the energy metabolism of
many anaerobic archaea (and bacteria). It has a redox potential well
below —400 mV, up to —500 mV, and thus can be used to reduce pro-
tons to hydrogen gas (E” = —414 mV). This exergonic reaction is used
to pump ions out of the cell, most likely Na™, and the electrochemical
Na™ gradient established is then used to drive ATP synthesis [21]. This
multisubunit membrane-bound hydrogenase (Mbh) has eight subunits
comprising a hydrogen-oxidizing module as well as Na*/H™ antiporter
modules [22]. Thus, for the subunit composition the Mbh resembles
modern complex I enzymes and indeed, hydrogenases are the evolu-
tionary precursor of complex I found in mitochondria or bacterial
membranes. In P. furiosus, the hydrogenase is used to generate an elec-
trochemical ion potential (Afi, ") for transport processes and other
energy-consuming membrane reactions but most of the cellular ATP is
generated by substrate level phosphorylation during glycolysis [21].
This is different in Thermococcus onnurineus that can grow by oxidation
of formate to carbon dioxide and hydrogen. This reaction is close to the
thermodynamic equilibrium and actually is the reaction with the lowest
AG known to sustain life (—2.6 kJ/mol) [23,24]. The reaction sequence
is simple and involves a formate dehydrogenase that oxidizes formate
and channels electrons to a membrane-bound hydrogenase, very simi-
lar to the enzyme described above for P. furiosus [22,23]. Electron trans-
fer to protons leads to the generation of an ion gradient that then drives
ATP synthesis. Although this has not been addressed experimentally,
ATP synthesis is suggested to involve Na* as a coupling ion.

A unique pathway that allows growth under strictly anaerobic
conditions is methanogenesis. Methanogens use only chemiosmosis
for energy conservation and couple methanogenesis to the generation
of two primary ion gradients [25]. One of these ion gradients is a
primary, electrochemical sodium ion gradient established by the
methyltetrahydromethanopterin-coenzyme M methyltransferase
(Mtr) [26,27]. This reaction is common to every methanogen. Some
methanogens also have an additional electron transport chain(s) that

includes cytochromes and have evolved a second, additional mecha-
nism to energize their membranes. This proton-motive electron trans-
port chain leads to a heterodisulfide of coenzyme M and coenzyme B
as an electron acceptor [28,29]. Therefore, methanogenic archaea,
which have a methyltetrahydromethanopterin-coenzyme M methyl-
transferase (Mtr) and a proton-motive electron transport chain with cy-
tochromes, couple methanogenesis to a proton and a sodium ion
gradient at the same time [30].

3. ATP synthases from archaea

Despite all the differences in how the electrochemical ion potential
to drive ATP synthesis is generated, all archaea have an ATP synthase.
The enzyme catalyzes ATP synthesis according to Eq. (1), at the expense
of the transmembrane electrical ion gradient [31,32]:

ADP + P; + n ions,,, —ATP + n ions;,. (1)

Since the bioenergetics of archaea has such a wide variety of differ-
ent mechanisms it was thought that the ATP synthases of archaea are
different in different tribes! The activity of ATP synthases is rather
easy to analyze. ATP hydrolysis can be measured by phosphate release
from ATP or ATP synthesis can be studied by artificial pH jumps in
whole cells [33]. Thus, the presence of the enzyme was demonstrated
rather early in time. The nature of the enzyme was then addressed by
attempts to purify it from different sources. Interestingly, despite all
the attempts in the 1970-1980s, there was no clear picture on the
subunit composition of the archaeal ATP synthases. All enzyme prepara-
tions varied in polypeptide compositions and the idea arose, that ATP
synthases from archaea differ in subunit composition and thus in struc-
ture and function. Genes had been isolated, but only single genes, not
the entire collection that encodes the A;Ap ATP synthase. This is due
to the fact that genes had been isolated from Crenachaeota in which,
as determined later by genome sequencing, the genes are spread over
the genome [34]. In contrast, the euryarchaeon Methanosarcina mazei
GO1 contained all genes in a cluster, actually in an operon, and this
allowed for the first time a proposal on the subunit composition and
topology in A;Ag ATP synthases [35]. These data indicate that the en-
zyme contains at least nine subunits. This was (much later) confirmed
after the first “complete” enzymes had been isolated [36]. Early electron
micrographs revealed that the A;Ag ATP synthase is, like the F{Fq ATP
synthase and the V,Vo ATP synthase, organized in two domains that
are connected by stalks [35].

At the time of discovery of archaeal ATP synthases two classes of ATP
synthases/ATPases were known. The F{Fo ATP synthases present in
bacteria, mitochondria and chloroplasts were evolved to synthesize
ATP. On the other hand, organelles of eukaryotes need to be energized
to drive, for example, transport processes. Since electron transport
machineries are only found in mitochondria or chloroplasts, the other
organelles are energized by ATP that is hydrolyzed according to
Eq. (1). The ATPase that catalyzes this reaction was purified from
those organelles and shown to have the same overall domain topology,
with membrane domain and a cytoplasmic domain that are connected
by stalks. Some of the subunits of the globular cytoplasmic domain of
V1V ATPases and F;Fq ATP synthases like o/B or 3/A shared a consider-
able sequence identity (20-30%), whereas other smaller subunits did
not. Therefore, it was concluded that ATP synthases/ATPases arose
from a common ancestor but evolved into different classes with distinct
function (ATP synthesis vs. ATP hydrolysis) [32,37-40]. Since the first
organellar ATPases were purified from vacuoles, this class of enzymes
is now referred to as vacuolar V{Vg ATPases. It should be pointed out
that eukaryotes thus have two different ATPases/ATP synthases: a F;Fg
ATP synthase in mitochondria and chloroplasts and a V{Vo ATPase in
other organelles. For a long time, there was a clear view on the “ATP
synthase/ATPase world” that had two “continents”, the F;Fo ATP syn-
thase and the V,Vo ATPase.
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After the first biochemical, immunological and molecular studies re-
searchers were puzzled to group the archaeal enzymes. They apparently
had properties of enzymes from both classes. Sequence analysis
revealed a close relationship of the A and B subunits to A and B of
V1Vo ATPases, respectively [41]. Since the primary sequence identity
of A and B was higher to A and B from V;Vy ATPase than /o from
FiFo ATP synthase, the archaeal enzyme was named V{Vo ATPase
and genes were annotated as genes encoding V;Vo ATPase subunits.
However, already at that time, Mukohata and Schdfer [42,43] argued
that, although the archaeal ATP synthase shares features with both,
V1V ATPase and F,Fg ATP synthase the enzyme is so different from
the other two groups, that they should be grouped in a third class, the
archaeal or A1Ag ATP synthase. This is now clearly justified by the
structural and mechanistic results, as discussed below, and functional
studies. Whereas the F;Fg ATP synthase catalyzes ATP synthesis at the
expense of an electrochemical ion gradient, the eukaryal V,Vg ATPase
functions as an ATP-driven ion pump, unable to synthesize ATP under
physiological conditions. The cellular function of archaeal ATP synthase
and F{Fo ATP synthase is to synthesize ATP by ion gradient-driven
phosphorylation, but the reaction is reversible and they may also
work as an ATP-driven ion pumps to generate an ion gradient under
fermentative conditions.

4. Structure and catalytic mechanism of the A;Ao ATP synthase
4.1. The overall arrangement of the A;Ao ATP synthase

The A;Ao ATP synthase is composed of subunits A-F, H, a and c in the
proposed stoichiometry of A3:Bs:C:D:E;:F:H;:a:cy. Similar to the related
bacterial F1Fo ATP synthase (o3:R3:y:8:€:a:ba:¢x) it possesses a water-
soluble A; domain, containing the catalytic sites, and an integral mem-
brane Ap domain, involved in ion translocation (Fig. 1A). Two
dimensional- [44,45] and three dimensional reconstructions
[46-48] of electron micrographs revealed a bipartite structure,

consisting of A; and Ap domains, which form a pair of coupled rotary
motors connected with one central and two peripheral stalks. The
soluble A; domain has the catalytic activity and the hydrophobic
membrane-embedded Ag domain is responsible for ion translocation
across the membrane. A collar-like structure located perpendicular to
the membrane seems to anchor the two peripheral stalks, which are
not penetrating into the Ao domain. Both peripheral stalks go all the
way up to the top of the A3Bs headpiece, thereby connecting statically
and mechanistically the A; with the Ag sector via the collar-like domain.

4.2. High resolution structures of the nucleotide binding subunits A and B

The A sector (A; ATPase) consists of the subunits A, B, C, D and F in
the stoichiometry of A3:Bs:C:D:F and is able to catalyze ATP hydrolysis
[40]. In the last decade all individual subunits of the A; ATPase have
been solved at high resolution [49-55]. Firstly, low resolution structures
of the A; sector [56,57] and the entire A;Ap ATP synthase [45-48],
combined with cross-linking data [58,59], and later crystallographic
structures of the As:Bs- [54] and As3:Bs:D:F-complex [55] enabled the
assignment into the enzyme complex shown in Fig. 1A-C. The
headpiece of A; consists of the subunits A and B, alternating around
the periphery of a central cavity, which is made up by subunit D. This
central subunit penetrates inside this cavity and is in proximity to
an A-B-A triplet [52,54-56], thereby coupling ion-translocation in the
a-c interface of Ap with catalytic events in the ATP synthesizing inter-
face of subunits A-B. Subunit A has been regarded as having catalytic
function, while subunit B plays an important role in nucleotide binding
and/or regulatory function [50,59]. Crystallographic structures of the
nucleotide-binding subunits A [49,54,55] and B [50,54,55] of A;Aq ATP
synthases show that they are composed of an N-terminal 3-barrel, an
a—f central domain, and a C-terminal a-helical bundle, similar to the
homologue nucleotide-binding subunits o and 3 of F{Fo ATP synthases
[60]. However, the superimposition of the two catalytic subunits of A
and B of AjAo ATP synthases and F,Fo ATP synthases, respectively,

Fig. 1. (A-D) Arrangements of the atomic structures of A;Ap ATP synthase subunits inside the EM map of archaeon Pyrococcus furiosus (EM Database ID: EMD 1542 [47]). Subunits A
(orange) and B (dark green) from Enterococcus hirae (PDB ID: 3VR2 [55]) alternate in the A3B; hexamer. The NMR structure of subunit F (PDB ID: 20V6 [53]; magenta) and the crystal
structure of subunit C (PDB ID: 1R5Z [51]; blue) and D (PDB ID: 3AON [52]; purple) form the central stalk. The structure of subunit a (yellow) was taken from PDB ID: 3RRK [81] and
the c ring (wheat) from PDB ID: 2BL2 [96]. The Thermus thermophilus EH dimer (green and cyan) was taken from PDB ID: 3K5B [77] and reveals the almost straight peripheral stalk
(B), whereas the crystal structure of Pyrococcus horikoshii OT3 subunit E (PDB ID: 4DTO [79]; red) and the T. thermophilus structure form the kinked second peripheral stalk (C). It has
been proposed [79] that ion-translocation in the interface of the ¢ ring and the C-terminal membrane-embedded domain of subunit a (yellow cylinder) causes alterations in the Ag sector,
which are transferred to the barbelled-shaped N-terminal domain of subunit a (yellow) and subunit C. As one consequence, the subunit a alterations will force the peripheral stalk subunits
to switch from a more extended (D) into a curved conformation (A) and vice versa, providing the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis (D).
For clarity the EM map is not shown in figures B and C, while in figure D one of the peripheral stalk subunits is removed.
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Fig. 2. (A) Structure comparison of the bovine 3 subunit (yellow; PDB ID: 1BMF [60]) and the AMP-PNP bound subunit A structure (orange; PDB ID: 314L [49]). Subunit A has two distinct
structural features compared to (> subunit which are highlighted in brown color; the non-homologues region (NHR from 117 to 188) and the C-terminal two helix extension from 540 to
588 residues. The difference in the binding of the AMP-PNP molecules could also be clearly noted. (B) Structure comparison of vanadate (Ay;, cyan; PDB ID: 3P20 [66]), sulfate (As, yellow;
PDB ID: 3172 [49]) and AMP-PNP (Apnp, orange; PDB ID: 314L [49]) bound structures of subunit A. The sheet-loop-helix motif of the P-loop is shown in cartoon representation. The various
modes of interaction of the bound sulfate, vanadate and AMP-PNP molecules to the S238 residues in the As, Ay; and Apnp structures are shown. The crucial water molecules are shown in
sphere representation. The water molecule from the As structure is marked as W1 and the one from Apyp is marked as W2. The sulfate (yellow stick) bound structure (As) is assumed to be
in a substrate-binding-like state, the vanadate- (V1, cyan stick) bound structure (Ay;) is proposed to take a transition like state, and the AMP-PNP- (orange stick) bound structure (Apnp)
the product-bound state. The S238 residue plays an important role by way of interacting with the ligand molecules in different modes in all states. The substrate-binding-like state and the
product-release state are hydrated while the transition-like state is deprived of water molecules in the active site. The distances between the closest oxygen atom of the sulfate, vanadate
and y-phosphate of the AMP-PNP molecules to the GER-loop residues E263 and R264 for the As, Ay; and Apnp structures are also indicated. The second vanadate (V2, cyan stick) is also

shown which demonstrates the pathway of entry of the substrate molecule.

shows differences in the subunits with the additional c-helices at the
very C-terminus of subunit A and the so-called non-homologous region
(NHR), of about 90 amino acids near the N-terminus [49] (Fig. 2A),
which are not present in 3 subunits of F;Fg ATP synthases, but present
in subunit A of the related eukaryotic V,Vg ATPases [61,62].

In comparison, as shown in the crystal structure of the M. mazei
Go1 A1Ap ATP synthase B subunit [50], the peptides G13 to P23 of the
N-terminus of subunit B forms a p-sheet-loop structure, and is homolo-
gous to the actin-binding motif of subunit B of the human V,Vg ATPase.
Whether the A; headpiece is linked with the actin network via subunit
B, as described for the V;Vo ATPase [63], has to be resolved.

4.3, Critical residues in the P-loop of the catalytic A subunit

Recently, the structure of the catalytic subunit A of the Pyrococcus
horikoshii OT3 A;Ao ATP synthase of the sulfate (As), ADP (Appp) and
AMP-PNP (Apnp) bound forms has been determined [49]. The results
demonstrated that the phosphate binding loop (P-loop) residue serine
is highly important for the interaction with the nucleotides and the
inorganic phosphate (Fig. 2B). Reflected also by the diverse P-loop
sequence, the crystallographic structures indicated that subunit A has
a unique arched conformation for the P-loop region, due to which the
mode of binding of the nucleotide is different from that of the catalytic
3-subunit of F;Fo ATP synthases. The second unique P-loop residue in
subunit A, phenylalanine, stabilizes this arched loop (Fig. 2B) and is there-
fore one of the critical residues in the P-loop sequence (GPFGSGKT) of
subunit A. This phenylalanine residue is the equivalent amino acid to

the alanine in subunit (3 of F;Fo ATP synthases (GGAGVGKT), which is a
key residue in the catalytic process inside the (3 subunit that moves
towards the y-phosphate of ATP during catalysis [60].

The different amino acid composition in the P-loop of subunit (3 of
F1Fo ATP synthases is also reflected by its horizontal orientation. The
novel P-loop conformation in subunit A forces the nucleotide into a
different arrangement inside the catalytic site with weaker interactions
of different and/or homologous surrounding amino acid residues and
making the nucleotide more solvent exposed [49]. This structural
feature explains the ability of A;Aq ATP synthases to hydrolyze apart
from ATP also GTP and UTP with 86% and 54% activities, respectively
[64,65]. These structural designs demonstrate how nature optimizes
biological activities down to such tiny details.

The importance of the polar serine residue of the P-loop in subunit A
is also indicated in the recently determined structures of the sulfate Ag
[49] and transition-like state, vanadate-bound form of catalytic subunit
A (Ay;) of the A;Ap ATP synthase from P. horikoshii OT3 [64] (Fig. 2B).
In both structures the sulfate or vanadate interacts only with S238
in the P-loop. However, the mode of interaction is very different;
while in Ag it is through a water molecule, in Ay; it is a direct hydrogen
bonding interaction. A comparison of the Ay;, As and AMP-PNP (Apnp)
bound structures showed that the vanadate molecule is positioned
closer to the P-loop compared to the sulfate molecule, and that the
y-phosphate is placed even closer in the Apyp structure, indicating
that vanadate is situated in the intermediate position. By analogy
with vanadate-bound structures of the biological motors FFo ATP
synthase and myosin [66,67] it could be interpreted that the
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vanadate-bound state mimics a transition-like state, with the
sulfate- (a phosphate mimic) bound structure (As) taking the
substrate-like position and the AMP-PNP-bound structure (Apnp)
adopting the product-bound state during catalysis (Fig. 2B).

Structural rearrangement of catalytically important residues in
the so-called Walker B motif of subunit A became obvious, when the
Avi, As and Apnp bound structures have been compared (Fig. 2B, [64]).
The Walker B motif residues or GER-loop, which is located above the
P-loop (Walker A motif) and known to be involved in immobilization
and polarization of a water molecule to facilitate nucleophilic attack at
the y-phosphate of ATP, is deviated by around 3.2 A in the Ay; structure
when compared with the Ag structure. Further, the side chains of gluta-
mate (E263) and arginine (R264) residues are significantly deviated by
2.3 A and 6.6 A, respectively, moving closer to the vanadate molecule
(Fig. 2B) and revealing substantial structural rearrangement during
the catalytic event.

The Ay; structure of the A;Aq ATP synthase showed for the first time
the entry of the substrate sulfate, a phosphate analogue, molecule into a
catalytic subunit of an ATP synthase (Fig. 2B). A second vanadate mole-
cule is found to be positioned, where the ATP molecule transiently

associates in the B subunit structure [68], demonstrating a similar path-
way of entry for both subunits in A;Ag ATP synthases. This position also
confirms the recent finding that during ATP synthesis the inorganic
phosphate binds first and hinders ATP binding to the catalytic site,
which then selectively allows binding of ADP [69].

4.4. How the nucleotide enters into the binding pocket

The crystal structures of the nucleotide bound subunit B of the A1Ag
ATP synthase from M. mazei G61 showed for the first time in ATP
synthases, how the ATP traverses the protein surface via two transient
intermediate binding sites to its final binding pocket and the concomi-
tant rearrangements in the nucleotide-binding and C-terminal region
of subunit B (Figs. 3A-B) [68,70,71]. When the nucleotide enters close
to the C-terminal domain of B, subunit D moves slightly, paving way
for it to interact with subunit B (transition state 1 in Fig. 3B), which
makes the C-terminal domain rotate by 6°. This moves the nucleotide
inside the AsBs hexamer, close to P-loop of subunit B (transition
state 2), a position which compares well with the binding site of the an-
tibiotic, efrapeptin C in the 3 subunit of F;Fo ATP synthases. Efrapeptin C

Fig. 3. (A) Structure of subunit B from M. mazei G61 (dark green) showing the different transition sites of the ATP molecule (blue stick). (B) Cross sectional view of the hexamer model of
A1Ao ATP synthase with subunits D (PDB ID: 3AON [52]; yellow) and F (PDB ID: 20V6 [53]; magenta). Subunits B (dark green; PDB ID: 2C61 [50]) and A (orange; PDB ID: 314L [49]) are
shown as surface representation. The ATP molecule enters via the gap formed by subunits A and B into the hexamer and positions in transient 1 (T1), whereby the C-terminal domain of
subunit B rotates and allows the ATP molecule to penetrate into the hexamer in concert with the rotation of subunit D. A concerted movement of the C-termini of subunits B and F as well
the rotation of D moves the nucleotide towards the transient 2 (T2), which is placed near to the P-loop, followed by the movement of ATP to the final binding site (F).
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is a potent inhibitor of F;Fo ATP synthases in mitochondria and some
bacterial species [72]. Due to the rotational movement of the central
stalk subunit D, the nucleotide will be moved to the actual binding
site of subunit B [71].

4.5. The central stalk couples ion-translocation and ATP synthesis

The shape of the A; domain had shown that the A3B; hexamer and
the Ag sector are separated by a 80 A long central stalk, consisting of
the subunits C, D and F, with subunit C forming the bottom of the central
stalk [45,57]. As shown by the crystallographic structure of the Entero-
coccus hirae subunit D, this protein comprises a long left-handed coiled
coil structure with a unique short B-hairpin [52,55]. Such left handed
coiled-coil structure is also conserved in the rotary proteins Fli] of the
flagellar type III protein export apparatus [73] and subunit vy of
F1Fo ATP synthases [60]. In contrast, the 3-hairpin region of subunit
D is specific for this subunit and important for ATPase activity in
A1Ao ATP synthases [55]. Subunit D can be cross-linked to subunit
A in a nucleotide-dependent manner [58]. The interaction between
both subunits involves both N- and C-terminal segments of D.

Similarly, in M. mazei G61 A1Ao ATP synthase, subunit F can be cross-
linked to subunit B through their C-terminal sequences, which shows a
nucleotide-dependent behavior [59]. The high resolution structure of B
subunit revealed [50] that the C-terminal peptide of B is at a similar
position to the so-called DELSEED-region of the nucleotide-binding sub-
unit 3 of the F;Fy ATP synthases [60], which also form a disulphide bond
with the C-terminal helix of the coupling subunit . Subunit F in solution
exhibits a distinct two-domain structure, with the N-terminal globular
region having 78 residues and the residues 79-101 forming the flexible
C-terminal part [53]. The flexible C-terminal tail enables this subunit to
undergo up and down movements relative to subunit B, bringing both
termini in close proximity (Fig. 3B). The DF- [52] and A3B3DF-crystal
structures [55] of the E. hirae enzyme show that the four-stranded p-
sheet in the N-terminal part of subunit F mediates the interaction with
subunit D, forming together the rotor shaft. The recently postulated
model of the rotation mechanism in the E. hirae AsBsDF-crystal struc-
tures [55] reveal that the DF-assembly induces a switch from a bindable
form to the nucleotide-bound form in one AB-pair, while the DF interac-
tion with a second subunit AB-pair causes the alteration from a bound
form to a tight nucleotide-binding form [55]. The rotational dynamics
of the E. hirae AsBsDF-complex have recently been confirmed in single
molecule studies [74], showing that DF rotates unidirectional in a coun-
terclockwise direction during ATP hydrolysis with a maximal rotation
rate of about 73 4 2 revolutions/s. In contrast to the thermophilic Bacil-
lus PS3 F; ATPase, which shows three 120° steps, which can be further
divided into substeps, the E. hirae A3BsDF-complex revealed only three
pauses separated by 120° [74], indicating the distinct difference be-
tween both molecular motors.

The tip of the central stalk in AjAo ATP synthases is made-up by sub-
unit C, which has a funnel shaped structure [51] with a central cavity,
providing space for the D and F assembly (Fig. 1B). As revealed by the
9.7 A resolution structure of the Thermus thermophilus enzyme, subunit
C sits asymmetrically on the c ring without penetrating significantly in
to the central pore of the c ring [48]. The function of subunit C, which
is characteristic for AjAg ATP synthases, has been described of being a
spacer unit that plays a role in coupling and rotational steps [75].

4.6. The peripheral stalks and its elastic features

The peripheral stalks are made up by the subunits E and H (Fig. 1A-C).
Concerning their sequence and subunit composition the peripheral stalks
of A1Ap ATP synthases are the most divergent elements compared to their
related F;Fo ATP synthases or eukaryotic V;Vg ATPases [76]. As shown by
the crystallographic structure of subunit H of the T. thermophilus AAo ATP
synthase [77] this protein is entirely a-helical with a long N-terminal
helix and a shorter C-terminal helix, which are linked by a sharp kink

(Fig. 1A-D). This C-terminal helix is close to the N-terminal helix and
the C-terminal tail of subunit E. The kink of subunit H together with the
loop of subunit E are predicted to be two flexible joints that tether the
headgroup to the coiled-coil region formed by the N-terminal helices of
subunits E and H.

Subunit E is a long, two domain protein with a C-terminal globular
domain [77-79], which is in close proximity to the top of an A-B inter-
face and C-terminus of H (Fig. 1A), and an extended N-terminal ci-helix.
Structures of a straight- (T. thermophilus, [77]) and a S-shaped confor-
mation (P. horikoshii OT3, [79]) of the extended N-terminal a-helix
subunit E have been determined, which fit well into the asymmetric
peripheral stalks of the 3D reconstruction of the P. furiosus enzyme
[79] (Fig. 1B-C). These features support the model in which the switch
from a straight- to an S-shaped conformation of subunit E in the two
peripheral stalks facilitates elastic power transmission between the Ag
and A; part, which is essential for facilitating the cooperation of the Ag
and A; motors and to increase the kinetic efficiency of the A;Ag ATP
synthase engine [79,80]. Furthermore, it has been proposed [79] that
ion-translocation in the interface of the c ring and the C-terminal
membrane-embedded domain of subunit a causes alterations in
the Ao sector (Fig. 1A, D), which are transferred to the barbell-shaped
N-terminal domain of subunit a and subunit C. As a consequence, the
subunit a alterations will force the peripheral stalk subunits to switch
from a more extended (Fig. 1A, subunit E (green)) into a curved confor-
mation (Fig. 1A, subunit E (red)) and vice versa, providing the storage
of transient elastic energy during ion-pumping and ATP synthesis/-
hydrolysis.

4.7. Architecture of the membrane-embedded Ao domain

The two peripheral stalks of AjAg ATP synthases, which have no
membrane-spanning N-terminal helix like the one in FFo ATP
synthases, are linked to the globular domain of subunit a, whose C-
terminal membrane-integrated segment forms the ion channel together
with the c ring [47,48]. The A1Ao ATP synthase subunit a (about 95 kDa)
is similar to its related subunit a in eukaryotic V{Vqo ATPases and is par-
tially functionally similar to subunit a (about 28 kDa) of F;Fo ATP
synthases [31]. Its C-terminal and ion-translocating part is membrane-
integral and its N-terminal domain (about 40 kDa) is on the cytoplasmic
side. The crystallographic structure of the barbell-shaped N-terminal
domain of the Meiothermus ruber A;Ao ATP synthase has been deter-
mined [81], (Fig. 1A-C). The middle and helical bundle of subunit a
faces the wedge-like subunit C. The hydrophobic C-terminus of a is pre-
dicted to have 7-8 transmembrane helices and is known to be involved
in ion translocation [47]. These a-helices are in close contact to a ring
made by multiple copies of subunit c, the rotor subunit. Subunit a is sug-
gested to form two “ion channels” to load the c ring with coupling ions
over the first channel and to remove the ion again from the c ring over
the second ion channel [48]. The recently determined 3-dimensional re-
construction of the T. thermophilus complex shows the eight transmem-
brane helices in subunit a [48]. These helices divide into two bundles,
each containing four helices (Fig. 4A). One bundle appears almost per-
pendicular to the membrane and contacts a single ¢ subunit near the
middle of the membrane. The other bundle appears tilted and contacts
the adjacent c subunit closer to the periplasm. This arrangement brings
the two c¢ subunits in distinct chemical environments and establishes
the conditions necessary for a two half-channel model of proton
translocation [48].

Whereas subunit a has underwent little changes during evolution,
subunit c has been a large evolutionary playground [82]. A lot of archaea
have an 8 kDa ¢ subunit with two transmembrane o-helices [35,83-85],
but some archaea have very unusual ¢ subunits. A 16 kDa ¢ subunit with
four transmembrane a-helices is present in all species of Pyrococcus,
Thermococcus, Methanobrevibacter, Methanobacterium, Desulfurococcus,
Staphylothermus and in Ignisphaera aggregans [86] as well as in
Methanothermobacter thermautotrophicus [87] and Methanosphaera
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stadtmanae [82,88]. Methanocaldococcus jannaschii and Methanococcus
maripaludis have a triplicated ¢ subunit (a ¢ subunit with three hairpins
and six transmembrane helices) with a molecular mass of around
21 kDa [89]. Also Methanopyrus kandleri is very special, because it is the

only organism known so far, which has a c ring consisting of only one ¢

subunit with 13 hairpins and therefore 13 ion-binding sites [82,90].
Although the variation in size is already unique, even more impor-

tant, also for function, is the variation in number of ion binding sites
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per ¢ subunit. In bacterial F;Fg ATP synthases, the c ring is made by mul-
tiple copies (10-15) of one subunit [91]. The 16 kDa c subunit with four
transmembrane a-helices of e.g. Pyrococci and Thermococci lost one
ion binding site [86] and the triplicated c subunit from M. jannaschii
[89] and M. maripaludis also lost one. This has enormous consequences
for the function of the enzyme. If we consider c rings to have the same
number of transmembrane a-helices, the c rings from Pyrococci and
Thermococci have only half the number of ion binding sites per ATP syn-
thesizing units. According to:

AGp = —n x F x Al 2)

where AGp = phosphorylation potential, n = number of translocated
ions, F = Faraday constant, and Afi;o, = electrochemical potential of
the coupling ion (Na™ or H"), the loss of one ion binding site in every sec-
ond hairpin of the rotor would lower the number of ions by half. The
resulting value for “n” (ions/ATP) of two is not enough to generate a phos-
phorylation potential of ~50 to 70 kJ/mol and thus the enzyme is no lon-
ger able to pump ions against this potential and thus unable to synthesize
ATP. Since the A;Ao ATP synthases from Pyrococci and Thermococci are
the only ATP synthases encoded in the genome [92], they must synthesize
ATP at the expense of Aliio, in vivo. A solution to this enigma is a c ring that
has more c subunits and indeed, circumstantial evidence point to a c¢;o
ring in P. furiosus [47].

5. Ion translocation and -specificity of the c ring of A;Aq
ATP synthases

The cring is the ion carrier and the primary structure of the cring de-
termines which ion binds to the c ring. c rings from most archaea and
bacteria are proton selective and the proton binding site is the con-
served carboxylate (Glu, Asp) present in helix two of the 8 kDa ¢ subunit
[93]. The HY is bound between the carboxyl oxygen of the conserved
carboxylate and the main chain carbonyl of another amino acid, for ex-
ample phenylalanine [93]. Very few c subunits, notably from anaerobic
bacteria and archaea use Na* instead of H" [94,95]. The Na™ binding
site of e.g. Ilyobacter tartaricus contains the before mentioned carboxyl-
ate and three more amino acid residues that coordinate the Na* [96,97].
These are: Q32, V63 and S66. Y70 forms a hydrogen bond with E65 and
stabilizes the geometry of the ion coordination shell, but is not directly
involved in Na™ coordination. T67 itself is also not directly involved in
Na™ binding but coordinates a buried structural water molecule in the
Na* binding site (Fig. 4B (inset)). Of these residues, only three are ade-
quately conserved to be spotted by sequence comparisons. These are
Q32, E65 and S66. Q is substituted and functionally conserved by E,
and S by T in some species. Thus the minimal and sufficient motif for
Na* binding is Q/E...E T/S. This motif is also present in the A;Aq ATP
synthase of some archaea (see below) as well as E. hirae. In the A;Ao
ATP synthase c ring of E. hirae (also called “bacterial V,Vo ATPase”) a
similar Na™* binding site is observed with the essential carboxylate
E139 as well as Q110, L61, T64 and Q65, which form the ion coordina-
tion shell and Y68 which makes hydrogen bonding interaction with
E139 (Fig. 4C (inset)).

As pointed out above, due to the variation in the number of
protomers the diameters of these c ring rotors differ from organism to
organism. A significant structural difference between c rings of FFg
and A;Ao ATP synthases is represented by the comparison of the Na™-
translocating undecameric ring of . tartaricus c ring (F;Fo ATP synthase)
and the c ring of the E. hirae A1Ao ATP synthase (Fig. 4). Whereas the L.

tartaricus c ring forms a cylindrical, hourglass shaped protein complex
with an outer diameter of ~50 A and an inner diameter of ~17 A [98],
the decameric ring of E. hirae is much more wider spanning an external
diameter of 83 A and an inner diameter of 54 A [96]. Although among all
the solved c ring structures, the E. hirae c ring has only 10 protomers, the
external c ring diameter is wider than the one of F;Fo ATP synthase ¢
rings. This structural feature enables the funnel shaped subunit C of
A1Ao ATP synthase, which is not present in F;Fo ATP synthases, to pen-
etrate into the central cavity of the c ring [52], and allowing a direct
translation event between c ring rotation and ATP synthesis in the
A3B3 headpiece (Fig. 4B).

A sequence comparison of all the sequences available for ¢ subunits
(as of Sept. 1., 2013) revealed the Na™* binding motif Q/E...E T/S to be
present in all methanogens and halobacteria, as well as in species of
the genera Pyrococcus, Thermococcus, Desulfurococcus, Ignisphaera,
Staphylothermus and Nanoarchaeum (Table 1). Of these, the A;Aq ATP
synthases from Methanobrevibacter ruminantium and P. furiosus have
been shown to be Na™ specific [65,86,99]. Structural models of a ¢;o
ring of P. furiosus and a c3 construct of M. ruminantium, generated com-
putationally, revealed the nature of the Na* binding sites (Fig. 5) [86].
The ¢y ring and the c3 construct consist of ¢ subunits with four trans-
membrane helices each. In the ¢y ring of P. furiosus the Na™ binding
site is within one ¢ subunit flanked by transmembrane helix 2 (TM2)
and helix 4 (TM4). The Na™ is coordinated by E142 (TM4), Q113
(TM3), T56 (TM2), and Q57 (TM2), and by the backbone of L53
(TM2). Y60 (TM2) is not directly involved in Na* coordination, but
forms a hydrogen-bond with E142, and therefore stabilizes the geome-
try of the ion-coordination shell (Fig. 5A). This kind of network is iden-
tical to that revealed by the crystal structure of the ¢, rotor from E. hirae
[96]. Between two c subunits is no second ion binding site in the cring of
P. furiosus (Fig. 5B). There the essential glutamate of the Na* binding
site was replaced by a methionine (M55) during evolution and there-
fore nature designed an unusual ¢ ring with only one Na™ binding site
in one c subunit. This is different in the c ring of M. ruminantium. As
was evident from sequence comparisons and confirmed by modeling
studies using a c; construct, M. ruminantium has one Na™ binding site
within one ¢ subunit (Fig. 5C), as in P. furiosus, but also a second Na™
binding site between two c¢ subunits (Fig. 5D). Both Na™ binding sites
are completely identical in their amino acid composition. Within one ¢
subunit the Na* is coordinated by the side chains of the amino acids
E140 (TM4), Q111 (TM3), Q61 (TM2) T60 (TM2) and L57 (TM2).
Again Y64 (TM2) is for hydrogen-bonding with the side chain of E140.
The second Na™ binding site in the c ring of M. ruminantium is between
two ¢ subunits. Again E59 (TM2'), Q30 (TM1’), Q142 (TM4), T141
(TM4) and L138 (TM4) are directly involved in Na* coordination.
Y145 (TM4) stabilizes the geometry of the ion-coordination shell by
hydrogen-bonding with E59 [86]. Therefore nature designed in the
case of M. ruminantium a c ring, which has one Na™ binding site within
and another between each c subunit.

6. Adaptations of archaeal ATP synthases to the inhospitable
environments their hosts thrive in

Sodium bioenergetics is advantageous for organisms that live on the
thermodynamic edge of life [20] like methanogens or T. onnurineus
thriving on formate. Any reduction in the magnitude of the electro-
chemical ion potential across the membrane by leakage of ions back
into the cell would be detrimental. Biological membranes are leakier
for protons than for sodium ions [102]. Thus, a sodium bioenergetics is

Fig. 4. (A) The three-dimensional EM map of the T. thermophilus enzyme at 9.7 A resolution (EM Database ID: EMD 5335 [48]) is shown as gray surface. The density corresponding to the ¢
ring (wheat) and subunit a (yellow) are shown as solid surface. Two cross-sections of the map segments near the middle of the c-ring show the contacts of ¢ subunits with helices of the a
subunit at two positions (indicated by red arrows). (B) Structure of the c ring of the F;Fo ATP synthase from Ilyobacter tartaricus (PDB ID: 1YCE [98]) showing a narrower cylindrical, hour-
glass shaped complex. (inset) Sodium ion binding site with the ion coordination shell formed by E65, Q32, V63 and S66 and Y70 is making a hydrogen bond with E65 to stabilize the ge-
ometry. (C) The A;Ao ATP synthase c ring structure from E. hirae (PDB ID: 2BL2 [96]) revealing a wider diameter at the upper part of the cylinder, which could accommodate the funnel
shaped C subunit (left; PDB ID: 1R5Z [51]; blue). (inset) Sodium ion binding site of the E. hirae ¢ ring showing the Na™ coordination shell formed by amino acids E139, Q110, L61, T64 and

Q65 and Y68 having hydrogen bonding interaction with E139.
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seen as the primary event in the evolution of bioenergetics [20,103,104].
Indeed, an acetogen with an ancient pathway in which carbon dioxide
fixation is coupled to ATP synthesis by a chemiosmotic mechanism re-

lies on a sodium potential. This pathway allows for the synthesis of
only a fraction of an ATP [104]. The same is true for methanogens that em-
ploy pretty much the same pathway [29]. So far, sodium bioenergetics has

Table 1
Ion binding motifs of different archaeal and bacterial ¢ subunits.
Organism Site 1° Site 2° Jon®
Bacteria (c subunits with one hairpin)*
Acetobacterium woodii c,/c, Q VXETTxxY Na* e
Ilyobacter tartaricus Q VXESTxxY Na* e
Propionigenium modestum Q IXESTxxY Na“ e
Bacillus subtilis N LXEALXxI H e
Escherichia coli L LxDAIxxI H o
Bacteria (c subunits with two hairpins)
Enterococcus hirae® “H1-H2 \ LxGTQxxY -
H3-H4 Q MXETYXXL Na* e
Euryarchaeota (¢ subunits with one hairpin)’
Archaeoglobus fulgidus E IXETIxxF Na*
Ferroglobus placidus E IXETIXXF Na*
Haladaptatus paucihalophilus E LXETLxxL Na*
Halalkalicoccus jeotgali E LXETLxxL Na*
Haloarcula hispanica E LXETLxxL Na*
Halobacterium salinarum E LXETLxxL Na*
Haloferax volcanii E LXETLxxL Na*
Halogeometricum borinquense E LXETLxxL Na*
Halopiger xanaduensis E LXETLxxL Na*
Haloquadratum walsbyi E LXETIxxL Na*
Halorhabdus utahensis E LXETLxxL Na*
Halorubrum lacusprofundi E LXETIxxL Na*
Haloterrigena turkmenica E LxETLxxL Na*
Methanocella paludicola Q IXETLxxL Na*
Methanococcoides burtonii E IXETIXXF Na*
Methanocorpusculum labreanum E LXETVxXF Na*
Methanoculleus marisnigri E IXETIXXF Na*
Methanohalobium evestigatum E IXETIXXF Na*
Methanohalophilus mahii E IXETIXXF Na*
Methanomethylovorans hollandica E IXETIxxF Na*
Methanoplanus petrolearius Q IXETVxXXF Na’
Methanoregula boonei B IXETIXXF Na*
Methanosaeta concilii E LXETLxxF Na*
Methanosalsum zhilinae Q IXEAIXXF H
Methanosarcina acetivorans E IXETIXxF Na'/H' e
Methanosphaerula palustris E IXETIXxF Na*
Methanothermus fervidus Q LXETHxXF Na*
Natrialba magadii E LXETLxXL Na*
Natronococcus occultus E LXETLxxF Na*
Natronomonas pharaonis E LXETLxxL Na*
Natronorubrum tibetense E LXETLxxL Na*
Picrophilus torridus Q IXETLxxI Na*
Thermoplasma acidophilum Q IXETLxxI Na*
Euryarchaeota (c subunits with two hairpins)
Methanobacterium sp. AL-21% “H1-H2 Q LXETQxxY Na*
H3-H4 Q LXETQxxY Na*
Methanobrevibacter ruminantium® H1-H2 Q LXETQxxY Na“ e
H3-H4 Q LXETQxxY Na' e
Methanosphaera stadtmanae® H1-H2 Q IXETQxxY Na*
H3-H4 Q IXETQxxY Na*
Methanothermobacter thermautotrophicus® H1-H2 Q LXETQxxY Na*
H3-H4 Q LXETQxxY Na*
Pyrococcus furiosus® H1-H2 \ LxMTQxxY -
H3-H4 Q MXETMxxF Na“ e
Thermococcus onnurineus® H1-H2 \% LXMTQxxY -
H3-H4 Q MxETMxxF Na*

(continued on next page)
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Table 1 (continued)

Organism site 1° Site 2° lon®
Euryarchaeota (c subunits with three hairpins)"
Methanocaldococcus jannaschii *H1-H2 A LxQTQxxY -
H3-H4 Q LXETQxxY Na*
H5-H6 Q MXETFxxF Na*
Methanococcus maripaludis H1-H2 A LxQTQxxY -
H3-H4 Q LXETQxxY Na*
H5-H6 Q MXETFxxF Na*
Methanospirillum hungatei H1-H2 A% IxQTQxxY -
H3-H4 Q VXETQxxY Na*
H5-H6 Q MXETFxxF Na*
Methanothermococcus okinawensis H1-H2 A LxQTQxxY -
H3-H4 Q LXETQxxXY Na*
H5-H6 Q MXETFxxF Na*
Methanotorris igneus H1-H2 A LxQTQxxY -
H3-H4 Q LXETQxxY Na*
H5-H6 Q MXETFxxF Na*
Euryarchaeota (c subunits with 13 hairpins)
Methanopyrus kandleri' Q FXETQxxY Na*
Crenarchaeota (c subunits with one hairpin)f
Acidianus hospitalis A% IXEGIXXY H'
Acidilobus saccharovorans \4 LXEGIxxY H'
Aeropyrum pernix \ LXEGIxxY H
Caldisphaera lagunensis \Y LXEGIxxY H
Caldivirga maquilingensis M FXETIxxY H"
Hyperthermus butylicus L LXEGIxxY H"
Ignicoccus hospitalis L IXETPxxY H*
Metallosphaera sedula \4 IXEGIXXY H
Pyrobaculum aerophilum \Y LXEAIxxY H*
Pyrolobus fumarii \% LXEGIxxY H*
Sulfolobus acidocaldarius v IXEGIxxY H’
Thermofilum pendens L LXEGIxxY H'
Thermoproteus neutrophilus L LXEAVxXY H'
Thermosphaera aggregans Q YXELWXXL H'
Vulcanisaeta distributa I LXEAIXxY H"
Crenarchaeota (¢ subunits with two hairpins)®
Desulfurococcus kamchatkensis *H1-H2 M LXMTQxxY -
H3-H4 Q YXELWxxY Na*
Ignisphaera aggregans H1-H2 T FxMTQxxA -
H3-H4 Q YXELFxxI Na*
Staphylothermus marinus H1-H2 M LxMTQxxY -
H3-H4 Q YXELIXxL Na*
Nanoarchaeota (¢ subunits with one hairpin)’
Nanoarchaeum equitans Q LXETQxxY Na*
Korarchaeota (c subunits with one hairpin)f
Korarchaeum cryptofilum L LXEGVxxY H"
Thaumarchaeota (¢ subunits with one hairpin)’
Cenarchaeum symbiosum L MXESIxxY H
Nitrosopumilus maritimus L MXESIxxY H"
Nitrosoarchaeum limnia L MXESIxxY H'
Nitrososphaera gargensis L MXESIXxY H'

2 H1 = Helix 1, H2 = Helix 2, H3 = Helix 3, H4 = Helix 4, H5 = Helix 5, H6 = Helix 6.

b Site 1 and 2 describes amino acids of the H* or Na* binding motif in helix one and two of the hairpin-like ¢ subunit.
¢ Except were indicated (®, experimental evidence), the ion specificity is suggested based on the presence or absence of the Na™ binding motif.
9 In bacterial ¢ subunits, the ion binding site is between two ¢ subunits and built by Q (site 1) and ET (site 2).

© In these ¢ subunits, the Na™ binding motif is shared by H1-H2 and H3-H4. There is only one
T As in bacterial ¢ subunits, the ion binding site is between two ¢ subunits and built by Q (site 1

Na* binding site in four transmembrane helices.
) and ET (site 2).

& These ¢ subunits have two ion binding sites in four transmembrane helices. One is within one ¢ subunit, one inbetween two c subunits.

‘“ In these ¢ subunits, the Na* binding motif is shared by H1-H2, H3-H4 and H5-H6. There are
This c subunit has thirteen covalently linked hairpins, each has the depicted Na™ binding site.

only been observed in anaerobes. In addition to living in low energy envi-
ronments these environments are full of fermentation end products such
as short chain fatty acids. These act as proton ferries to decouple metabo-
lism from ATP synthesis. These fermentation end products cannot shuffle

two Na™ binding sites in six transmembrane helices.

back Na™ into the cell and thus, aNa™ potential is not dissipated by short
chain fatty acids [20].

ANa*-dependent A;Ap ATP synthase is fully consistent with the phys-
iology of M. ruminantium. It has no cytochromes and only the Na™-
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Fig. 5. (A) Computationally derived structural model of the Na* binding site of the c ring from P. furiosus. The ion binding site is within one ¢ subunit between TM2 and TM4. The Na* is
coordinated by E142 (TM4), Q113 (TM3), T56 (TM2), and Q57 (TM2), and by the backbone of L53 (TM2). Y60 (TM2) is not directly involved in Na* coordination, but forms a hydrogen-
bond with E142. (B) Between two ¢ subunits is no second ion binding site in the c ring of P. furiosus. There the essential glutamate of the Na™ binding site is replaced by a methionine (M55).
(C) The c ring of M. ruminantium has two Na* binding sites. According to the computationally derived model [86] the Na™ is coordinated by the side chains of the amino acids E140 (TM4),
Q111 (TM3), Q61 (TM2) T60 (TM2) and L57 (TM2) within one ¢ subunit. Again Y64 (TM2) is for hydrogen-bonding with the side chain of E140. (D) The second Na™ binding site in M.
ruminantium is between two c¢ subunits. Again E59 (TM2’), Q30 (TM1’), Q142 (TM4), T141 (TM4) and L138 (TM4) are directly involved in Na™ coordination. Y145 (TM4) stabilizes

the geometry of the ion-coordination shell by hydrogen-bonding with E59 [86].

motive methyltransferase for membrane energization and thus, the
Na* potential must be used to drive ATP synthesis [20,29,86]. With
the evolution of cytochromes and an additional proton-pumping elec-
tron transfer chain in some methanogens like the Methanosarcinales,
an organism arose that couples its metabolism to the generation of a
proton potential and a sodium ion potential. The ATP synthase adapted
to this scenario by using Na* and H* [29,30]. Apparently, Na* and H*
concurrently drive ATP synthesis. The ion binding site has a high prefer-
ence for HT, but under physiological conditions of pH 7.5 and 400 mM
NaCl (sea water) both Na* and H* are used simultaneously [100].
The minimal Na™ binding motif is conserved but the residues involved
in Na™ binding in bacterial ¢ subunits are less conserved. Noteworthy is
the change of glutamine (Q) of the sodium binding motif Q...ES/T to a
second glutamate, and indeed, this exchange still allows for Na* binding

[101]. Such a Q — E exchange is present in a lot of methanogens (Table 1).

The ion specificity of the membrane-bound hydrogenase (Mbh) of
P. furiosus has not been addressed experimentally, but there is no reason
to believe that sodium ions are not the coupling ion. It is also notewor-
thy, that some of the halophilic archaea have a sodium ion binding site:
but whether the ATP synthase indeed uses Na™ or Na™ and H' has to be
established. Apart from the Euryarchaeota (Methanogens, Thermococci
and Pyrococci), only the genera Desulfurococcus, Ignisphaera

and Staphylothermus of the phylum Crenarchaeota [86] as well as
Nanoarchaeum equitans of the phylum Nanoarchaeota have the conserved
Na™ binding site. Unfortunately, nothing is known about their physiology
but it can be concluded that Na™ is important for their physiology.

Another adaptation is the increase in length of the ¢ subunits with in-
creasing temperature. At least in methanogens, there is a clear tendency
from one hairpin (most methanogens, e. g. M. mazei, 35 °C) to two hair-
pins (M. thermautotrophicus, 70 °C), three hairpins (M. jannaschii, 85 °C)
and 13 hairpins (M. kandleri, 98 °C). The higher the number of covalent
linkages the higher the stability of the rotating c ring. These arguments
may be true for the two peripheral stalks that may gives additional stabil-
ity to the rotating nanomachine.

7. Conclusion

A1Ao ATP synthases of hyperthermophilic archaea have unique
structural and functional features, including an optimized P-loop design
of the catalytic A subunit, enabling the enzyme to catalyze ATP apart
from GTP and UTP. The 80 A long central stalk with its subunits C, D
and F, reflects a coupling mechanism diverse to the Wankel engine
like form, described for the 'y—¢ stalk ensemble of F{Fg ATP synthase.
A hallmark of the classification of A;Ag ATP synthases is the number
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and structures of peripheral stalk subunits (E-H). A primary function is
to allow the rotary elements of Ag and A; to move relative to each other.
Their importance for regulation and fine-tuning of the entire enzyme
will be a topic for the near future. So far, biochemical and structural
work on these unique enzymes has been done with enzymes isolated
directly from cells of these hyperthermophiles. Since these are difficult
to grow and yields are low, biochemical analyses are a challenge and not
possible for many interesting archaea. The advent of genetic systems,
overexpression, tagging and affinity purification will bring the field
into the next round. There is still lot to do to unravel the beauty of
these fascinating enzymes.
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