
2000 George Lyman Duff Memorial Lecture
Atherosclerosis Is a Liver Disease of the Heart
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Abstract—The production of apolipoprotein B (apoB)–containing lipoproteins by the liver is regulated by a complex series
of processes involving apoB being cotranslationally translocated across the endoplasmic reticulum and assembled into
a lipoprotein particle. The translocation of apoB across the endoplasmic reticulum is facilitated by the intraluminal
chaperone, microsomal triglyceride transfer protein (MTP). MTP facilitates the translocation and folding of apoB, as
well as the addition of lipid to lipid-binding domains (which consist of amphipathicb sheets anda helices). In the
absence of MTP or sufficient lipid, apoB exhibits translocation arrest. Thus, apoB translation, translocation, and
assembly with lipids to form a core-containing lipoprotein particle occur as concerted processes. Abrogation of$1 of
these processes diverts apoB into a degradation pathway that is dependent on conjugation with ubiquitin and proteolysis
by the proteasome. The nascent core-containing lipoprotein particle that forms within the lumen of the endoplasmic
reticulum can be “enlarged” to form a mature very low density lipoprotein particle. Additional studies show that the
assembly and secretion of apoB-containing lipoproteins are linked to the cholesterol/bile acid synthetic pathway
controlled by cholesterol 7a-hydroxylase. Studies in cultured cells and transgenic mice indicate that the expression of
cholesterol 7a-hydroxylase indirectly regulates the expression of lipogenic enzymes through changes in the cellular
content of mature sterol response element binding proteins. Oxysterols and bile acids may also act via the
ligand-activated nuclear receptors LXR and FXR to link the metabolic pathways controlling energy balance and lipid
metabolism to nutritional state.(Arterioscler Thromb Vasc Biol. 2001;21:887-898.)
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A therosclerotic cardiovascular disease is the major cause
of death in technically advanced societies.1–3 The hall-

mark of atherosclerosis is the accumulation of cells contain-
ing excessive lipids (ie, foam cells) within the arterial wall.4

Plasma lipoproteins are a major source of the lipid that
accumulates in atherosclerotic lesions.5 Within the arterial
wall, many processes act in a seemingly concerted manner to
initiate the formation of lesions that ultimately result in the
occlusion of blood flow, ischemia, and tissue injury.6–8 These
processes include injury to the endothelium, retention of
lipoproteins within the arterial wall, oxidation of lipids, and
inflammation and proliferation of smooth muscle cells.9

The liver is the major organ responsible for the produc-
tion10 and degradation11,12 of apoB-100–containing lipopro-
teins. In response to genotype and nutrition, the balance in
these 2 pathways determines the plasma levels of LDL, an
important determinant of susceptibility to atherosclerosis.1,13

For example, patients with familial combined hyperlipidemia
exhibit increased rates of production of apoB-containing
lipoproteins by the liver and increased susceptibility to
atherosclerosis.14,15 Similarly, patients with familial hyper-
cholesterolemia with functional loss of hepatic LDL receptors

display marked hypercholesterolemia and increased suscep-
tibility to atherosclerosis.16 In addition, the type of dietary
fatty acid consumed influences the hepatic levels of choles-
terol esters, the amount of cholesterol esters that are secreted
(which affects plasma levels of LDL),17 and the susceptibility
to atherosclerosis.18

The Liver Is a Therapeutic Target
for Atherosclerosis

Based on the central role of the liver in determining plasma
lipoprotein levels, several therapeutic strategies that act on
hepatic lipid metabolism have been developed to ameliorate
several forms of hyperlipidemia and reduce the susceptibility
to atherosclerosis. Bile acid–binding resins, such as cho-
lestyramine, induce the hepatic expression of cholesterol
7a-hydroxylase (CYP7A1),19 increase hepatic LDL receptor
expression and LDL uptake,20 and cause a slight, but signif-
icant, reduction of plasma LDL.21 Fibrates activate hepatic
peroxisome proliferator–activated receptor-a, resulting in
increasedb-oxidation of fatty acids, decreased plasma tri-
glycerides, and increased plasma HDL levels.22 b-Hydroxy-
b-methylglutaryl coenzyme A reductase inhibitors (ie,
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statins) block cholesterol biosynthesis, increase the hepatic
expression of LDL receptors and hepatic LDL uptake, and
decrease plasma LDL.23,24A large long-term clinical trial has
established for the first time that simvastatin, ab-hydroxy-
b-methylglutaryl coenzyme A reductase inhibitor, signifi-
cantly decreased mortality and morbidity from cardiovascular
disease.25 On the basis of these combined findings demon-
strating the therapeutic importance of the liver in ameliorat-
ing hyperlipidemia and cardiovascular disease, we propose
that “atherosclerosis is a liver disease of the heart.”

For the past several years, our research has concentrated on
2 seemingly unrelated aspects of hepatic lipid metabolism:
(1) how the production of apoB-containing lipoproteins by
the liver is regulated and (2) the regulation of the expression
of cholesterol-7a-hydroxylase and how this gene/enzyme
plays a central role in regulating lipid and lipoprotein metab-
olism. The present review will summarize how these 2
independent lines of inquiry converged, leading to new
insights integrating hepatic lipoprotein metabolism with bil-
iary function.

In Mammals, Assembly and Secretion of
ApoB-Containing Lipoproteins Are

Coordinately Regulated in Response to
Nutritional State via the SREBP Family of

Transcription Factors
Lipoprotein transport systems are essential for the survival
and reproduction of all metazoan species. In submammalian
species, sex hormones and developmental signals coordi-
nately induce all the processes necessary for delivering
essential lipid nutrients for egg and sperm production (see
review26). As a result of estrogen-induced hyperlipidemia
during spawning, several species of salmon indigenous to the
Pacific West Coast of North America die from arteriosclero-
sis soon after their single reproductive act.27,28 These obser-
vations emphasize that evolutionary development favors
maximizing the transport of lipids from the liver to reprod-
uctive tissues rather than protection from hyperlipidemia-
induced artery disease.

In mammals, coordinate induction of the lipoprotein assembly/
secretion pathway occurs in response to metabolic signals in
a manner that is reminiscent of the sex-linked hormone
induction displayed by submammalian species.29 Compared
with hepatocytes from chow-fed rats, those from sucrose-fed
rats displayed induced synthesis of all VLDL lipids (ie,
cholesterol, cholesterol esters, triglycerides, and phospholip-
ids) as well as increased assembly and secretion of apoB-
containing lipoproteins.29 Conversely, hepatocytes from
fasted rats displayed reduced synthesis of all VLDL lipids,
together with a decrease in assembly and secretion of apoB-
containing lipoproteins.30,31 These findings suggest that the
nutritional state causes a coordinated response in the lipopro-
tein assembly/secretion pathway by the liver. These coordi-
nate changes include the rates of synthesis of all VLDL lipids
and the capacities of processes necessary to package these
lipids into VLDL particles. Additional studies have shown
that the expression of apoB mRNA remains nearly constant,
whereas the amount of de novo synthesized apoB secreted
varies in parallel with the rate of lipogenesis. These data
suggest that posttranslational processing of apoB plays a

critical role in the coordinate control of hepatic VLDL
assembly/secretion.31–33

Attempts to recapitulate the coordinate induction of lipo-
genesis and VLDL assembly/secretion caused by
carbohydrate-feeding animals by adding fructose or glucose
to the medium of cultured rat hepatocytes were unsuccess-
ful.29,30 Although glucose, fructose, and fatty acids increased
the amount of glycerolipids secreted as VLDL, the amount of
apoB secreted remained unchanged.29,30 In addition, adding
glucose directly to the medium of HepG2 cells34 or fructose
directly to the medium of primary cultured hamster hepato-
cytes35 did not increase the secretion of apoB along with
increased lipid secretion. The combined data suggest that
increased availability of carbon unit substrates derived from
hexose is not sufficient for the coordinate induction of
lipoprotein assembly/secretion. We have proposed that met-
abolic signals produced in response to the nutritional state act
to coordinately regulate the genetic expression of genes
controlling the processes necessary for VLDL assembly and
secretion.26

The discovery of the sterol response element binding protein
(SREBP) family of transcription factors provided new insights
into how the expressions of genes involved in regulating the
synthesis of most lipids and many other processes controlling
lipoprotein production and metabolism are coordinately regulat-
ed.36,37 The ability of SREBP to activate gene transcription is
regulated by oxysterols and fatty acids,38–42providing mamma-
lian lipoprotein metabolism a metabolic control independent of
reproductive status. There are several examples showing that
increased SREBP-mediated gene expression is associated with a
coordinate induction of hepatic lipogenesis, the expression of
hepatic lipogenic enzymes, and the assembly and secretion of
apoB-containing lipoproteins; such examples are SREBP1a
transgenic mice,43,44 hepatoma cells that express a CYP7A1
transgene,45 carbohydrate-fed mice,46 and mice that express a
CYP7A1 transgene (R.A. Davis, unpublished data, 2001). These
combined findings support the proposal that metabolic signals
coordinately regulate the apoB-containing lipoprotein assembly/
secretion pathway by acting through changes in SREBP.

Efficiency of ApoB Translocation Across the
Endoplasmic Reticulum Determines Whether
ApoB Enters VLDL Assembly and Secretion

or Is Cotranslationally Degraded
To gain insight into which processes may be rate limiting for
VLDL assembly, we determined the relative rate constants
describing the movement of apoB through the secretory
pathway of cultured rat hepatocytes.32 Our results (summa-
rized in Figure 1) indicate that (1) the rate-limiting step is
movement out of the rough endoplasmic reticulum and
(2) only a fraction of de novo synthesized apoB is secreted,
with the remainder being degraded within the hepatocyte.32

Subsequent studies have shown that the majority of apoB
detected by epitope-specific monoclonal and polyclonal an-
tibodies resides within the endoplasmic reticulum.33 Addi-
tional findings indicating that small peptides ('70 kDa) were
present in the endoplasmic reticulum but absent in the Golgi
led to the proposal that apoB was degraded within the
endoplasmic reticulum.33 Surprisingly, in rat livers, a major
portion of the apoB that accumulated in the rough endoplas-
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mic reticulum was membrane-associated and susceptible to
degradation by exogenous proteases.47 In addition, specific
apoB epitopes were present on the cytoplasmic surface of rat
liver microsomes, as demonstrated by binding to specific
monoclonal antibodies.47 Inasmuch as the microsomal mem-
brane vesicles used for these studies were shown to be intact
and impermeable to proteases and small molecular weight
molecules (ie, mannose phosphate), it was concluded that
apoB was exposed on the cytoplasmic surface of the endo-
plasmic reticulum.47 These combined data led to the proposal
that unlike most other “secretory proteins,” apoB had the
capacity to become a “transmembrane” protein in the endo-
plasmic reticulum (ie, display translocation arrest).47 Addi-
tional data supporting the proposal that apoB can exist as a
stable transmembrane protein has been obtained by studies
using different models of hepatocytes, including rat liver,48

HepG2 cells,49–52 chicken hepatocytes,53 and rabbit livers.54

The absence in apoB of predictable amphipathica helices
that are of sufficient length to span a membrane bilayer (ie,
transmembrane domain)55–57 argued against a typical “stop-
transfer” sequence being responsible for translocation ar-
rest.58,59 One explanation for a transient arrest of apoB
translocation was the presence of “pause-transfer” sequenc-
es.60–62 In addition, the unusual characteristic of apoB being
a nonexchangeable protein associated with VLDL and LDL
may provide the basis for its ability to reside in the endoplas-
mic reticulum as a stable transmembrane protein. With this
consideration, we proposed that the amphipathicb sheets in
apoB, which exhibited structural features similar to those that
allow porins to integrate into membranes, allow apoB to
integrate into lipoproteins and act to block translocation.47

Secretion of ApoB-Containing Lipoproteins by
Cells Lacking Microsomal Triglyceride Transfer

Protein Is Blocked Because of an Inability of
ApoB-53 to be Completely Translocated Across

the Endoplasmic Reticulum
Analysis of the sequence and the structure of apoB showed
that it contains many lipid-binding domains located through-
out its unusually long (.500 000-kDa) peptide length.55–57,63

Structure/function analysis of various truncated forms of

apoB expressed in hepatoma cells established that a minimum
size of apoB was necessary to form a core-containing
lipoprotein particle.64 For example, although apoB-15 was
abundantly expressed in rat hepatoma cells, it did not assem-
ble lipoprotein particles because it was too short.64 In con-
trast, apoB-53 was abundantly expressed in rat hepatoma
cells and, as a result, was assembled and secreted in small
VLDL-sized lipoprotein particles.64 Subsequent studies fur-
ther established the importance of size and lipid-binding
domains as essential characteristics of apoB necessary for the
assembly and secretion of core-containing lipoproteins.65–68

Extending similar studies to mice provided a compelling
mechanism for the hypobetalipoproteinemic phenotype (ie,
mutations in the apoB gene that result in apoB forms that are
too short to assemble core-containing lipoproteins).69,70

Further studies expressing various forms of apoB have
provided compelling evidence for a cell-type–specific pro-
cess that is necessary for the assembly of apoB-containing
lipoproteins. When expressed in rat hepatoma cells, human
apoB-53 assembles core-containing lipoprotein particles that
are secreted.64 In marked contrast, although apoB-53 can be
produced in abundance in nonhepatic cells (ie, Chinese
hamster ovary [CHO] cells), it is degraded instead of being
secreted as a lipoprotein particle.71 To identify the cell-type–
specific process and its role in lipoprotein assembly/secretion,
2 distinct forms of apoB, having different abilities to assem-
ble lipoproteins, were expressed in CHO cells.71 Although the
expression of apoB-15 in CHO cells resulted in the secretion
of apoB-15 in a lipid-deficient form, no detectable lipopro-
teins containing apoB-53 were secreted into the culture
medium.71 These data show that apoB that is too short to form
a lipoprotein particle behaves as a generic secretory protein
and is secreted by CHO cells. In contrast, the structural
features that allow apoB-53 to form a lipoprotein particle
prevent its assembly into lipoproteins and secretion by CHO
cells. Moreover, because the same apoB-53 construct facili-
tated the production and secretion of apoB-53 lipoprotein
particles from rat hepatoma cells,64 we concluded that non-
hepatic CHO cells lacked a process necessary for the assem-
bly of apoB-containing lipoprotein particles.71

N-acetyl-Leu-Leu-norleucinal (ALLN) blocked the degra-
dation of translocation-arrested apoB-53, causing it to accu-
mulate in the endoplasmic reticulum of CHO cells. This
discovery indicated that the cell-type–specific process miss-
ing in nonhepatic cells functions to translocate apoB across
the endoplasmic reticulum and subsequently assemble it into
a lipoprotein particle.71–73Proteolytic mapping using epitope-
specific antibodies revealed that'70 kDa of the N-terminus
of translocation-arrested apoB-53 was in the lumen of the
endoplasmic reticulum, whereas the remaining C-terminus
resided in the cytoplasm.73 In the absence of ALLN,'85 kDa
of the N-terminal portion of apoB was cleaved and secreted.73

These studies have shown that CHO cells lack a process that
is essential for the translocation of apoB.

In hepatoma cells, translocation of apoB and lipoprotein
assembly vary inversely with cotranslational degradation.
Pulse-chase experiments using HepG2 cells showed that
although ALLN blocked the intracellular degradation of
apoB-100 and caused it to accumulate in microsomes, secre-
tion was not increased.51,74 These data suggest that apoB
degradation does not determine how much was secreted but

Figure 1. KRER, KSecretion, KSER, and KGolgi are rate constants (K), where
RER indicates rough endoplasmic reticulum (ER), SER indicates
smooth ER, KRER5KSecretion, and KRER,KSER and KGolgi. The movement
of apoB out of the RER is the rate-limiting step determining the ulti-
mate rate of apoB secretion because KSER and KGolgi exceed KRER.
Only a portion of de novo synthesized apoB is secreted, whereas the
remainder is degraded within the hepatocyte.
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that translocation determined how much apoB was either
degraded (translocation arrest) or assembled into a lipopro-
tein (completely translocated).

Because the formation of N-terminal apoB-100 peptides,
produced from translocation-arrested apoB-100, occurred
before completing translation, the data also indicated that
degradation of translocation-arrested apoB-100 occurred co-
translationally.51 In other experiments, it was observed that
adding oleic acid to the medium of cultured hepatocytes
increased the efficiency of apoB translocation across the
endoplasmic reticulum and the amount that was assembled
and secreted into lipoproteins.74 These data suggest that oleic
acid–stimulated glycerolipid biosynthesis facilitates the trans-
location of apoB across the endoplasmic reticulum and the
assembly of lipoprotein particles.

The topographical orientation of translocation-arrested
apoB-100 in ALLN-treated HepG2 cells was found to be
similar to that of apoB-53 in CHO cells (ie,'69 kDa of the
N-terminus was in the lumen, whereas the remaining
C-terminal portion was exposed to the cytoplasm).51,73 In
other epitope mapping studies, it was concluded that apoB
may assume an orientation having multiple transmembrane
domains that weave in and out of the endoplasmic reticu-
lum.75 These data suggest that similar structural motifs in
apoB are responsible for its ability to assemble a core-
containing lipoprotein particle and to assume a transmem-
brane orientation in the endoplasmic reticulum. Recent stud-
ies suggest that sequences in apoB-41 responsible for
“binding” phospholipids are different from the amphipathicb
sheets that “bind” triglycerides.76

Cotranslation, Translocation, or Degradation
Determines the Initial Fate of De Novo

Synthesized ApoB
On the basis of the combined data, we proposed a model that
integrates apoB translocation with lipidation (Figure 2). This
model predicts that the structures in apoB that allow it to
assemble stable lipid/protein emulsions containing amphi-
pathic and hydrophobic lipids provide the signals that deter-
mine its metabolic fate within the endoplasmic reticulum,
which is lipoprotein particle assembly or degradation. Thus,
in the presence of sufficient lipid, the lipid-binding domains
of apoB fold in a manner that allows particle assembly and
translocation into the lumen of the endoplasmic reticulum

(Figure 2). There are several dynamic features of this model
that provide adaptation to the genetic, metabolic, and nutri-
tional environment in which the lipoprotein assembly/secre-
tion pathway is expressed. In situations in which the assembly
and secretion of apoB-containing lipoproteins is most efficient
(eg, dietary carbohydrate induction29), translation, translocation,
protein modification, protein folding, and lipid addition occur in
a concerted manner. As a result, no intermediates accumulate in
the endoplasmic reticulum, and the integrity of its functions is
maintained. In contrast, metabolic situations in which$1 of
these individual steps is impaired (eg, fasting30,31 or abetali-
poproteinemia77), apoB is rapidly and cotranslationally degraded
by a process that is inhibited by ALLN (Figure 2).

This model accurately predicts that the hepatic VLDL
assembly/secretion pathway is intimately linked to the lipo-
genic state. Thus, nutritional and metabolic conditions lead-
ing to the induction of hepatic lipogenesis would drive the
predicted lipid-facilitated translocation of apoB and the com-
pensatory decrease in its degradation. Metabolic coordinate
regulation of mammalian VLDL assembly/secretion is remi-
niscent of the estrogen induction of hepatic VLDL secretion
in avian species.78–80 However, unlike estrogen induction,
which is linked to reproduction, this metabolic regulation
involves diverse signals that provide greater specificity.

There has been remarkable progress in elaborating the
details of the VLDL assembly pathway. Of particular impor-
tance has been the identification and characterization of the
processes responsible for apoB translocation and degradation
of translocation-arrested apoB.

Intraluminal Protein MTP Facilitates
Translocation of ApoB and Its Assembly of

Lipoprotein Particles
Microsomal triglyceride transfer protein (MTP) is a lipid
transfer protein that is present in the lumen of the endoplas-
mic reticulum of liver.81,82 Its predicted role in the assembly
of lipoproteins was shown when the genetic basis for abetali-
poproteinemia was found to be caused by mutations in the
MTP gene.83 MTP has the ability to facilitate the transfer of
neutral and amphipathic lipids between membranes and
vesicles.84 It is likely that MTP plays a role in the folding of
apoB in addition to transferring lipid to the nascent lipopro-
tein particle.85–95

Figure 2. Translocation across the endo-
plasmic reticulum determines the fate of
apoB. C and N indicate the C- and N-
termini, respectively; S-S, disulfate bond.
In the presence of sufficient lipid, the
lipid-binding domains of apoB fold in a
manner allowing apoB to be assembled
and translocated into the lumen of the
endoplasmic reticulum.
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The finding that plasma from patients with abetalipopro-
teinemia is enriched with the same N-terminal peptide pro-
duced from proteolytic clipping of translocation-arrested
apoB-53 from transfected cultured cells led to the conclusion
that MTP lipid transfer facilitates apoB translocation.77 This
interpretation was subsequently supported by the finding that
cells treated with chemical inhibitors of MTP lipid transfer
activity displayed an inability to translocate apoB across the
endoplasmic reticulum, which led to its rapid degrada-
tion.86,96,97Additional support for the essential role of MTP in
apoB translocation was provided by transfection studies using
cell culture systems. The inability of CHO cells,71,73,93COS
cells,98 and HeLa cells99 to translocate apoB across the
endoplasmic reticulum and to assemble apoB-containing
lipoprotein particles can be corrected by plasmid-driven
expression of MTP. However, it has also been reported that
transfected apoB-41 could be secreted by the mouse mam-
mary cell line C127, which displays no detectable MTP
expression.100 In addition, in vitro translation/translocation
assays showed that pancreatic microsomes could translocate
apoB-48 in the absence of detectable MTP.101 Although these
studies suggest that detectable amounts of apoB-48 can be
translocated across the endoplasmic reticulum without MTP,
it is possible that the efficiency is low. The phenotype of the
single gene (MTP) disorder, familial abetalipoproteinemia, in
which there is an almost, but not quite, complete inability to
secrete apoB-100 and apoB-48 lipoprotein particles, supports
this interpretation.77,102

The developments of chemical and genetic methods to inhibit
MTP function have provided new insights into its essential role
in the assembly and secretion of apoB-containing lipoprotein
particles. Chemical inhibition of MTP lipid transfer activity was
shown to block the early step in the VLDL assembly/secretion
pathway.96,103–105Irreversible inhibition of MTP transfer activity
in HepG2 cells showed that the level of MTP lipid transfer
activity was correlated with apoB-100 secretion.105These results
support the proposal that MTP controls the rate-limiting step in
VLDL assembly/secretion. The finding showing that plasma
levels of apoB-100 were reduced by 28% in heterozygous MTP
gene–deleted mice further supports this proposal.106 Subsequent
studies showed that the concentration of MTP within the
endoplasmic reticulum, not the MTP-to-apoB ratio, is the key
determinant of the amount of apoB-100 secreted by the liver.107

The additional finding that overexpression of MTP via an
adenovirus transgene increased the secretion of apoB provides
further evidence supporting the rate-limiting role of MTP in
VLDL assembly/secretion.108 It has been recently reported that
an MTP inhibitor (AGI-S17) blocked MTP-apoB binding and
the secretion of apoB without interfering with MTP lipid transfer
activity.109These data are consistent with the proposal that MTP
facilitates the translocation of apoB across the endoplasmic
reticulum by acting as a chaperone.93

MTP Lipid Addition to Lipid-Binding
Domains in ApoB Facilitates Translocation

and Lipoprotein Particle Assembly
Functional mutagenesis experiments indicate thatb-sheet
lipid-binding domains in apoB are intimately linked to the
MTP requirement for translocation across the endoplasmic
reticulum.110 Additional studies suggest that a particular

sequence, which resides between apoB-51 and apoB-53 and
contains a predicted amphipathica helix surrounded by
amphipathicb sheets, displays an usually high requirement
for MTP.95 These findings suggest that the addition of lipid to
these structures occurs in concert with protein folding and
translocation. This interpretation is consistent with additional
studies showing that the translocation of apoB-10097 and
apoB-5371,73 requires functional MTP, whereas shorter forms
of apoB (apoB-41100 and apoB-48101) can be translocated,
albeit inefficiently, independently of MTP. Additional studies
in which hepatic MTP gene expression was knocked out with
the use of cre-recombinase in mice showed that apoB-100
virtually disappeared from plasma, whereas detectable levels
of apoB-48 remained.111,112In 1 study, liver-specific knock-
out of the MTP gene in mice mainly blocked the secretion of
apoB-100, with almost no effect on the secretion of apoB-
48.111 In another study, liver-specific knockout of the MTP
gene in mice blocked the secretion of apoB-100 and apoB-
48.112 With the proviso that the apoB-48 was not of intestinal
origin, these findings provide further support for the proposal
that the translocation of apoB-48 is not completely dependent
on MTP.

Cytoplasmic C-Terminal Portion of
Translocation-Arrested ApoB Is Degraded by

Ubiquitin-Dependent Proteasome
If the amount of energy consumed by the degradation of de
novo synthesized apoB (protein synthesis followed by deg-
radation72) is commensurate with the importance of this
process, one would predict that the cotranslational degrada-
tion of apoB is likely to be essential for maintaining vital
cellular function(s). One obvious benefit of degrading
translocation-arrested apoB is preventing “constipation” of
the secretory pathway by sequestering common factors used
for processing secretory proteins. Several processes involving
the proteolytic degradation of several proteins in addition to
apoB have been proposed as the means to maintain “quality
control” of the endoplasmic reticulum.113–117

In a series of elegant experiments from several different
laboratories, the proteolytic process responsible for degrading
translocation-arrested apoB in the endoplasmic reticulum was
identified and characterized. This information provides com-
pelling evidence supporting the hypothesis that metabolic fate
(translocation and lipoprotein particle assembly or degrada-
tion) occurs cotranslationally (Figure 3). Lactacystin, which
specifically inhibits proteolysis by the proteasome,118blocked
the degradation of apoB-100 in HepG2 cells in a manner
similar to ALLN.119 These findings led to the conclusion that
ubiquitin conjugation and proteasome degradation is respon-
sible for the rapid degradation of apoB.119 Subsequent studies
have shown that abrogation of translocation across the endo-
plasmic reticulum diverts apoB to ubiquitin-dependent pro-
teasome degradation.97,120 –124 The recent finding that
ubiquitin-dependent proteasome degrades translocation-
arrested apoB in primary hamster hepatocytes suggests that
this pathway is relevant to in vivo physiology.125 (There are
many additional proteolytic degradation pathways for degrad-
ing apoB [see reviews126–128]. It is likely that the phenotype
and metabolic state of the cell play an important role in
determining the fate of apoB.)
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The discovery that the ubiquitin-dependent proteasome
was responsible for degradation of apoB in the endoplasmic
reticulum provides strong support for the proposal that this
process occurred in the cytoplasm, as proposed in Figure 3.
The inability to detect nonglycosylated forms of the apoB
reporter that were degraded by the proteasome led to the
proposal that apoB is transferred back into the cytoplasm via
retrograde translocation processes after entering the lumen of
the endoplasmic reticulum.129 However, compelling evidence
indicating that apoB does not undergo a retrograde translo-
cation process but is cotranslationally degraded by the
ubiquitin-dependent proteasome was obtained by using an
apoB chimera that had antigen reporters on the N-terminus
and C-terminus.130 By use of a variety of techniques, it has
been shown that the N-terminus remains within the lumen of
the endoplasmic reticulum, whereas the C-terminus residing
in the cytoplasm is degraded by the proteasome.130Additional
studies have shown that apoB associates with sec61b of the
translocon complex while it is being translated and attached
to the ribosome.131 This complex is subsequently released by
a process dependent on MTP lipid transfer activity.132 These
data support the proposal that apoB translation, translocation,
MTP lipid transfer, and lipoprotein particle assembly occur as
a concerted reaction. Abrogation of any 1 of these processes
diverts apoB into a pathway that leads to ubiquitin conjuga-
tion and cotranslational degradation by the proteasome.

Some of the first studies using electron microscopy are
generally considered seminal in recognizing how adaptations
of “the generic secretory pathway” provide specialized func-
tions, such as hepatic VLDL assembly/secretion.133–135With

the use of antibodies that recognize human LDL, electron
microscopy immunolocalization of epitopes presumably rep-
resenting apoB has provided important information on the
intracellular itinerary of apoB in the hepatic VLDL assembly/
secretion pathway. The results suggested that (1) apoB was
synthesized in the rough endoplasmic reticulum, (2) VLDL-
sized lipid particles, without immunodetectable apoB, ap-
peared in the lumen of the smooth endoplasmic reticulum,
and (3) VLDL-sized lipid particles containing immunodetect-
able apoB appeared in the lumen of the junctions between the
rough and smooth endoplasmic reticulum.135 These findings
led the authors to conclude that VLDL was assembled in the
endoplasmic reticulum via a process in which apoB was
joined together with a nascent lipoprotein particle produced
in the lumen.135 The recent discovery of lipoprotein particles
visibly present in the endoplasmic reticulum of intestines in
apoB knockout mice provided additional support for the
proposal that apoB is not essential for the formation of
core-containing lipoprotein particles within the endoplasmic
reticulum.136

Based on the ability to discriminate at least 2 separate
steps, the 2-step model of the VLDL assembly/secretion
pathway was proposed.137 Experimental evidence supporting
a 2-step model of the VLDL assembly/secretion pathway in
which an HDL-sized particle is transformed into a VLDL-
sized particle has been recently published.138,139The second
step (in which an HDL-sized particle is transformed into a
VLDL-sized particle by oleic acid–stimulated lipogenesis)
has been shown to require ADP ribosylation factor-1 and its
activation of phospholipase D.127,140 The ADP ribosylation
factor-1 requirement for the second step explains its inhibi-
tion by brefeldin A.141 These findings and those showing that
in hepatoma cells the oleic acid stimulation of the second step
requires a phospholipase A2 rearrangement of membrane
phospholipids142 suggest that the second step may involve the
formation of a specialized vesicle. These combined findings
indicate that the first step (ie, apoB translocation and initial
particle assembly131,132) and the second step require oleic
acid.

The oleic acid requirement may be more complicated than
merely supplying substrate for glycerolipid biosynthesis.
Mice lacking functional stearoyl-coenzyme A desaturase-1
show a nearly complete inability to secrete apoB-containing
lipoproteins.143 Moreover, treatment of primary hepatocytes
from these mice with oleic acid does not overcome the defect
in the secretion of apoB-containing lipoproteins.143 Because
the expression of stearoyl-coenzyme A desaturase-1 is
SREBP1c dependent,144,145 it may play an indirect role in
VLDL secretion through a regulatory loop with SREBP.

CYP7A1 Regulates Catabolism of Cholesterol
to Bile Acids, Which Subsequently Determines
Cholesterol Homeostasis and Intestinal Lipid

Absorption and Lipoprotein Production
The liver-specific gene product CYP7A1 is the rate-limiting
enzyme controlling the synthesis of bile acids from choles-
terol.146 This pathway controls cholesterol homeostasis and
indirectly influences the production of intestinal and hepatic
lipoproteins. In the rat, the CYP7A1-dependent cholesterol
catabolic pathway accounts for'85% of the cholesterol that

Figure 3. The production of apoB-containing lipoproteins by the
liver is regulated by a complex process involving apoB being
cotranslationally translocated across the endoplasmic reticulum
and assembled into a lipoprotein particle. The translocation of
apoB across the endoplasmic reticulum is facilitated by the
intraluminal chaperone, MTP. MTP facilitates the translocation,
folding of apoB, and addition of lipid to lipid-binding domains
(which consist of amphipathic b sheets and a helices). In the
absence of MTP or sufficient lipid, apoB exhibits translocation
arrest. Thus, apoB translation, translocation, and assembly with
lipids to form a core-containing lipoprotein particle occur as
concerted processes. Abrogation of $1 process necessary to
form a fully translocated lipoprotein particle diverts apoB into a
degradation pathway that is dependent on conjugation with
ubiquitin and proteolysis by the proteasome. The nascent core-
containing lipoprotein particle that forms within the lumen of the
endoplasmic reticulum can be “enlarged” to form a mature
VLDL particle.
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is removed from the body.147 The role of CYP7A1 in
intestinal lipoprotein production is emphasized by findings
showing that its deletion in CYP7A12/2 knockout mice
results in postnatal lethality that is reversed by dietary bile
acids and fat-soluble vitamins.148,149 Furthermore, the size
and content of the endogenous bile acid pool is an important
determinant of intestinal lipid digestion, absorption, and
assembly into lipoprotein particles.150–152 Finally, because
some fat-soluble vitamins inhibit the oxidation of apoB-
containing lipoproteins, a process that contributes to the
formation of atherosclerosis,153–155bile acid–facilitated intes-
tinal absorption of antioxidants may have a significant effect
on the metabolism of lipoproteins.

Cholesterol/Bile Acid Biosynthetic Pathway
Indirectly Regulates Production and
Metabolism of Hepatic Lipoproteins

Bile acids are essential for the digestion and absorption of
essential lipid nutrients.146 By providing dietary fatty acids
and cholesterol to the liver as substrates for the production of
hepatic lipoproteins, the production of bile acids indirectly
influences VLDL assembly/secretion. Furthermore, the
CYP7A1 bile acid synthetic pathway indirectly induces the
expression of hepatic LDL receptors, the major pathway
responsible for removing apoB-containing lipoproteins from
plasma. As a result, the LDL receptor expression level varies
in parallel with CYP7A1 expression.20,23,156

Hepatic Lipogenesis and VLDL Production Is
Linked to Cholesterol/Bile Acid Biosynthetic

Pathway via Oxysterols
Stable expression of CYP7A1 in CHO cells led to an
induction in the expression of LDL receptor mRNA.157 The
increased expression of LDL receptors in CHO cells express-
ing CYP7A1 was accompanied by a significant increase in
the cellular content of free and esterified cholesterol.157 In
additional studies, stable expression of a CYP7A1 transgene
in CHO cells resulted in increasing the cellular content of
SREBP1, the expression of mRNAs encoding lipogenic
enzymes, and the synthesis of cholesterol, cholesterol esters,
triglycerides, and phospholipids.41 Because the rate of metab-
olism of radiolabeled 25-hydroxycholesterol by CHO cells
was increased by CYP7A1 expression, it has been proposed
that CYP7A1 indirectly induces SREBP-dependent gene
expression by metabolizing and inactivating oxysterol repres-
sors.41,157 Early studies failed to show that CYP7A1 could
metabolize oxysterols.158 However, subsequent studies have
provided compelling evidence that CYP7A1 is capable of
7a-hydroxylating many oxysterols, some of which were
better substrates than cholesterol.159,160

The role of CYP7A1 in regulating hepatic VLDL assem-
bly/secretion was demonstrated by expressing CYP7A1 in rat
hepatoma cells. Transfected cells showed a marked induction
in the expression of mRNAs encoding lipogenic enzymes and
MTP. Consequently, the assembly and secretion of apoB-
100–containing lipoproteins were also increased.45 The in-
duction of lipogenesis and of VLDL secretion was linked to
the increased cellular content of mature SREBP1, which is
directly proportional to the level of CYP7A1 mRNA expres-
sion.45 This is further supported by the results obtained from

constitutive expression of CYP7A1 in the livers of transgenic
mice. In addition to an induction of mRNAs encoding
lipogenic enzymes and MTP, CYP7A1 transgenic mice
exhibit an increase in the assembly and secretion of apoB-
100–containing lipoproteins (R.A. Davis, unpublished data,
2001). Together, these data provide convincing evidence
linking the anabolic VLDL assembly/secretion pathway to
the CYP7A1 cholesterol catabolic pathway in the liver. It is
interesting to note that CYP7A1 transgenic mice display no
hyperlipidemia in spite of having increased hepatic VLDL
production. It should also be noted that CYP7A1 transgenic
mice display increased hepatic expression of the LDL recep-
tor, a gene whose transcription is SREBP dependent.161

Apparently, the increased expression of the LDL receptor and
CYP7A1 in transgenic mice was sufficient to compensate for
the increased hepatic VLDL production. These combined
findings emphasize that the balance between the hepatic
anabolic and catabolic pathways is a critical determinant of
plasma levels of lipoproteins. Our findings support the
proposal that SREBP-mediated gene expression links the
anabolic VLDL production pathway to the cholesterol/bile
acid catabolic pathway.45

The metabolic relationship between the bile acid synthetic
pathway and VLDL production may help to explain some
forms of hyperlipidemia. In several types of hypertriglyceri-
demic patients, the production of hepatic triglyceride-rich
lipoproteins varies in parallel with rates of bile acid synthe-
sis.162–165Reduced absorption of bile acids displayed by type
IV hypertriglyceridemic patients may be responsible for
increased bile acid synthesis.166Moreover, the findings show-
ing that treating type IV hyperlipidemic patients with agents
that either increase (cholestyramine167) or decrease (chenode-
oxycholic acid168) CYP7A1 expression results in parallel
changes in VLDL triglyceride production provide strong
evidence indicating the importance of this relationship to
human physiology.

A Look Toward the Future
The complex processes controlling hepatic assembly and
secretion of lipoproteins begin at the endoplasmic reticulum,
where the metabolic fate of de novo synthesized apoB is
determined. ApoB can undergo a concerted cotranslational
translocation step that is coupled to lipoprotein particle
assembly and entrance into the secretory pathway. Con-
versely, the cotranslational translocation of apoB can become
arrested, leading to ubiquitin conjugation and cotranslational
degradation by the proteasome. Which of these 2 paths are
taken by apoB is a “choice” that is determined by many
different parameters, including MTP activity, the appropriate
folding and modifications of apoB, and the association of
apoB with lipids, which is dependent on their availability.
Thus, the metabolic fate of apoB is coordinately linked to the
expression of genes controlling hepatic lipid metabolism and
the availability of lipids for lipoprotein assembly.

The transcription of many of the genes that encode en-
zymes regulating energy and lipid metabolism are controlled
in part by transcription factors whose activity is dependent on
substrates and products of the bile acid biosynthetic pathway.
Because CYP7A1 controls hepatic levels of cholesterol, it
indirectly affects the content of mature SREBP, an important
determinant of the transcription of several regulatory lipo-
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genic enzymes. CYP7A1 also affects hepatic levels of oxys-
terols and bile acids, which are the ligands that activate the
nuclear receptors LXR169-171 and FXR,172–175 respectively.
The additional finding showing that LXR induces the expres-
sion of CYP7A1176 and SREBP1c42,177 further indicates the
possibility of an additional mechanism linking the bile acid
biosynthetic pathway and the VLDL production pathway.
Thus, the number and types of metabolic pathways that may
be linked to the cholesterol/bile acid synthetic pathway must
be expanded from the already diverse group that is regulated
by genes whose transcription is controlled by the SREBP
family.36 Gaining an understanding of how these diverse
metabolic pathways are linked should provide important new
insights linking energy balance and lipid metabolism to
nutritional state.
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